Arithmetic geometry of algebraic curves and their moduli space
Takashi Ichikawa (Saga University)

Abstract

We review the following subjects:
e Basic theory on algebraic curves and their moduli space,

e Schottky uniformization theory of Riemann surfaces, and its extension called arithmetic
uniformization theory,

e Application to these theories to the arithmetic of the moduli space of algebraic curves,
especially to automorphic forms on this space.
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81. Introduction

1.1. Brief history

Around 18001830, Gauss(1777-1855), Abel(1802-1829) and Jacobi(1804-1851) found
that the inverse function of the elliptic integral:

y = /d:n /\/f(:n) (f(z) : a polynomial of degree 4 without multiple root)

is an elliptic function, i.e., a double periodic function of the complex variable y, and
they expressed the function as an infinite product and the ratios of theta functions.
= complex function theory.

Riemann(1826-1866) constructed Riemann surfaces from algebraic function fields
C(z,y) (x: avariable, y : finite over C(x)),

and solved Jacobi’s inverse problem using Abel-Jacobi’s theorem and Riemann’s theta
functions.
= complex geometry and algebraic geometry (1857).

Teichmiiller(1913-1943) constructed analytic theory on the moduli of Riemann surfaces.

Mumford constructed the moduli of algebraic curves as an algebraic variety (1956), and
studied this geometry. Further, he and Deligne gave its compactification as the moduli
of stable curves (1969).

String theory provided a strong relationship between physics and the theory of moduli
of curves.

Around 19601970, Shimura constructed arithmetic theory on Shimura models with
applications to the rationality on Siegel modular forms, and further Chai and Faltings
extended his result to any base ring (1990).



1.2. Plan of this lecture

We will review the following subjects with some proof:

e Very classical results on algebraic curves over C and the associated Riemann surfaces:
for example, p-functions and elliptic curves, differential 1-forms and period integrals,
Riemann-Roch’s theorem, Abel-Jacobi’s theorem and Jacobian varieties, degeneration,
Schottky uniformization and the description of forms and periods.

e Rather classical results on moduli and families of algebraic curves: for example, moduli
of elliptic curves and higher genus curves, stable curves and their moduli (Deligne-
Mumford’s compactification), the irreducibility of the moduli, Eisenstein series and
Tate curve, Mumford curves;

and recent results on arithmetic version of Schottky uniformization.

e Recent results on arithmetic geometry of the moduli space of algebraic curves: for
example, Fourier expansion of (elliptic and Siegel) modular forms and their rationality,
Teichmiiller modular forms and the Schottky problem, Mumford’s isomorphism.

Especially, we explain that the classical, but not so familiar Schottky uniformization
theory which gives an explicit description of differential forms, periods and degeneration of
Riemann surfaces. Furthermore, we give its extended version in the category of arithmetic
geometry (unifying complex geometry and formal geometry over Z), and the application
to automorphic forms, called Teichmiiller modular forms, on the moduli space of algebraic
curves.



82. Algebraic curves and Riemann surfaces

2.1. Riemann’s correspondence

Algebraic curves. Algebraic varieties are topological spaces obtained by gluing zero sets
of polynomials of multiple variables, and closed subsets of algebraic varieties are defined as
zero sets of polynomials (Zariski topology). These examples are

the projective n-space P} o (k" —{(0,...,0)}) />
= {(wo:  :xps1)=(cxg:-+:crpy1) | ¢ # 0},

and its subsets (called projective varieties which are proper over k (= compact)) as the
zero sets of homogeneous polynomials over an algebraically closed field k.

. def . . . ..
(algebraic) curves = 1-dimensional algebraic varieties

Riemann’s correspondence. There exists an equivalence (trinity) of the categories:

(the category of)
proper smooth
curves over C

take C-rational points N N take function fields
Riemann surfaces finite extensions
def . . make Riemann surfaces .
= compact 1-dimensional — of the rational
complex manifolds function field C(z)

Genus. The genus of a Riemann surface and the corresponding curve is defined as the
number of its holes (Figure).
Genus 0 case.

the projective line IP’lc

v pY

the Riemann sphere - C(z)

PL(C) = C U {00}
Genus 1 case. For cubic polynomials f(z) € C[x] without multiple root,

Cy= {(:L'(] DX xg) € IP’2C ‘ 3:03:% = x%f(a:l/azo)}
v hS

complex tori Figure C(z,y);

C/L y? = f(x)

Here

L is a lattice in C, i.e., a sub Z-module of rank 2 such that L ®z R = C,

1
Es (L) o Z T absolutely convergent series for k > 1,
ueL—{0}



F(z) ¥ 42® — 60E(L)x — 140E4(L),

of 1 1 1 . .
p(z) = pr(z) dof p) + Z <m - $> : Weierstrass’ g-function
ueL—{0}
p(z) is absolutely and uniformly convergent on any compact subset of C — L,
z+> (1:p(2) : ¢'(2)) gives a biholomorphic map C/L = C(C),

and

C(x,y) is a quadratic extension of C(z) defined by y? = f(x)
+ Cy is a double cover of P§ ramified at the 3 roots of f(x) and oo.

An elliptic curve is a proper smooth curve C' of genus 1 and with one marked point xg.
Then C has unique commutative group structure defined algebraically with origin xg. For
example, the above C¢ with (0: 0: 1) is an elliptic curve, and the map C/L = C(C) is also
a group isomorphism which follows from the addition law of p(z) :

(g - p’(w))z'

Exercise 1. Show the following Laurent expansion of p(z) :

1 o0
p(z) = — + (2n + 1)E2n+2(L)z2" around z = 0.
z

n=1

Further, using this fact, the periodicity of p(z) :

p(z+u)=p(z) (uel),
and the maximum principle on holomorphic functions, prove that

¢/ (2)% = 4p(2)® — 60E4(L)p(z) — 140E6(L)

(' G=r == dr )
e, p(z)=x zZ =
v VAaz3 — 60E sz — 140F¢

3
and that Eg(L) = ?E4(L)2.
Genus > 1 case. For a Riemann surface R of genus > 1, by Riemann’s mapping theorem,

its universal cover is biholomorphic to

o« {r € C | Im(7) > 0} : the Poincaré upper half plane.

Then we have
R= H;/m(R): called a Fuchsian model,

where the fundamental group m1(R) of R is a cocompact discrete subgroup of
def a b
PSLQ(R) = c d S MQ(R) ad —bc=1 {:]:EQ}
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which acts on Hy by the Mobius transformation:

ar +b
—
ct +d

(in fact, PSLo(R) is the group Aut(H;) of complex analytic automorphisms of Hy).

Remark. Let T’ be a congruence subgroup of SLy(Z), for example

SLyz) © {(Z Z)eMg(Z) ad—bc:l}
S Ly(N) & {( ’

d
5 T(N) ¢ {(Z Z)eSLg(Z) a—lEbEczd—lEOmod(N)}

the principal congruence subgroup of SLo(Z) of level N.

o

> € SLy(Z) | ¢=0mod(N)

E/_/

Then H;/T is a noncompact 1-dimensional complex manifold, and becomes compact by
adding the set P(Q)/I" of cusps of I'. Hy/T' and (H; UPY(Q))/T are called modular

curves.

2.2. Riemann-Roch’s theorem

Let R be a Riemann surface of genus g, and let D be a divisor on R which is, by definition,
a finite sum of points on R with coefficients in Z. When D is represented as ) pcpap - P,
the associated invertible sheaf Or(D), namely line bundle, on R is defined as

Or(D)(U) def {f: meromorphic functions on U | ordp(f) +ap =20 (P €U)}

for open subsets U of R. Then Riemann-Roch’s theorem states
dimg HO(R7 OR(D)) — dimc H' (R7 OR(D)) = deg(D) +1—g,

where deg(D) = > pcpap is the degree of D. Denote by Qg the invertible sheaf of holo-
morphic 1-forms on R. Then by Serre’s duality, the residue map gives a nondegenerate
pairing

H°(R,Qr(-D)) x H'(R,Or(D)) — C,

and hence
dimg H°(R, Or(D)) — dimg H°(R, Qr(—D)) = deg(D) + 1 — g.

2.3. Differential forms, periods and Jacobians

Let R be a Riemann surface of genus g > 1. Then its fundamental group 71 (R;z¢) with
base point xg € R is represented by

g
<a17517"'7ag759 H alﬁl _15 >7
—_———— |

generators

relation



where the generators «;, 8; are canonical, i.e., closed oriented paths in R with base point
xo such that «;, B; intersect as the x,y-axes and that (o U ;) N (o; U B;) = {wo} if i # j
(Figure). Then

Theorem 2.1. (Abel, Jacobi, Riemann, see [Mur])
(1) The space H° (R,R) of holomorphic 1-forms on R is g-dimensional, and is gen-

erated by unique holomorphic 1-forms wi,...,w, satisfying that / wj = 0;5. Furthermore,

deg (Qr) =29 — 2.
(2) (Riemann’s period relation) The period matrix

def
i 1<i,j<g

of (R;{ai, Bi}i<i<g) is symmetric, and its imaginary part Im(Z) is positive definite.
(3) (Abel-Jacobi’s theorem) Let

(73

CI°(R) = {divisors with degree 0 on R} /{ Z ordp(f) - P}

PeR

the divisor class group with degree 0 of R, and let C9/L be the g-dimensional complex
torus obtained from the lattice L def 79 +7Z9 - Z in CY. Then the map

By
SE=) = (X[
J i 1<i<g
gives rise to a group isomorphism:

p:CI°(R) = CY/L.

Remark. It is clear that (z1,...,24) — (exp(27r\/—1z1), - exp(27r\/—1zg)) gives the isomor-

phism
cI/L = (CX)9/< <exp <2m/—1 wj>> 1<5< g>,
Bi 1<i<g

exp <2m/—_1/ﬁi wj> (1<4,j<g9)

are called the multiplicative periods. Let Pic’(R) denote the Picard group with degree
0 of R which is defined as the group of linear equivalence classes of line bundles with degree
0 over R. Then it is known that

and then

CI°(R) Pic’(R)
D OR(D)
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becomes an abelian variety, i.e., a proper (commutative) algebraic group over C, and
the isomorphism is also a biholomorphic map. This abelian variety is called the Jacobian
variety of R (or of the associated curve), and denoted by Jac(R).

Proof. (1) By Riemann-Roch’s theorem,

dimc H°(R, OR) — dimc H*(R,Qr) = 1—g,
dimc H°(R,Qg) — dimg H*(R,Ogr) = deg(Qg)+1—g.

By the maximum principle on holomorphic functions on R, H°(R, O) consists of constant
functions on R, and hence

dimc HY(R,QR) = g, deg(Qgr) = 29 — 2.

To prove the remains of (1), and (2), (3), first we show a generalized form of Riemann’s
period relation. Let P the 4¢g oriented sided polygon obtained from R by cutting the paths
a;,B; (1 < i < g) (Figure). Fix Py € P, and for a holomorphic 1-form ¢ on R, define
f(P)=] Ji?) ¢. Then for a meromorphic 1-form 1 on R whose poles belong to the interior P°
of P (this condition is satisfied by moving slightly s, §; if necessary), using the function f=*
on the boundary 0P of P defined by

p
) = ¢ (Peo;UB),
Py
P
)Y [ s (Pe—au-p),
Py
we have
27T\/__12R65P(f7/)) = fv (by the residue theorem)
PcP opP
g
= + 4 0+ + + _ >
;(/f vr [ 1w /ﬁif v /_ﬁif v
g
- ([u-r o | )
=1 N
g
:E«Jﬁ%@(NNMD
Therefore,

g = 32((]9) (¥ - (L) (19))

pPeP i=1

which we call the generalized Riemann’s period relation.



In particular, for two holomorphic 1-forms ¢, ¢, put f(P) = [, g) ¢ (P € P°), and put
oy o Bi Bi

(A;B] — B;A}) =0.

Then by the above,

M-

-
Il
—

Further,

9. 1 g .

i=1
1

_ 1 _
- s ), 7= g 40

ou\? ou\?
= /Pdudv = /P <<0_x> + (8_y> ) dxdy
(f =u++v—1lv, z=2+ v—1y : local coordinates)

by Cauchy-Riemann’s relation du/dx = Jv/dy, Ou/dy = —0v/0z, and hence this value
is positive if ¢ is not identically 0. Therefore, any holomorphic 1-form ¢ with fai =20
(1 < i < g) becomes identically 0, and hence for any base w} (1 < i < g) of H*(R,Qg),

i)

(2) Ifjgp = w;, ¢ = wj, then by the above, fﬁi wj — fﬁj w; = 0, hence Z is symmetric.
Further, if ¢ = Y% cw; € H°(R,Qg) is not 0, then ¢ = (cy,...,c;) # 0, and hence
Im(eZ'c) > 0. This implies that Im(Z) is positive definite. This proves (2).

(3) If f is a meromorphic function on R, then by the generalized period relation,

> <ordp(f) : /PP wj)

0

|
er)

S L)L) (L)

e L

< L, w’->' _is a regular matrix. This implies (1).

because fai af/ f, fﬁi df / f € 2m\/—1Z. Hence the map p in (3) is well-defined.
Next, we show the injectivity of u. By Riemann-Roch’s theorem, for P, P, € R,

dimgc HY(R, Qr(Py + P2)) = g + 1 = dimg H*(R, Qg) + 1,

and hence there is a meromorphic 1-form on R which is holomorphic except for simple poles
at P, P with residues 1, —1 respectively. Let D be a divisor with degree 0 on R such that



pu(D) € L. Then D is represented as a finite sum ), a; (Pli) — P2(i)> for a; € Z, P(i), Pzi) € R,
and hence there is a meromorphic 1-form ¢ on R such that ) p.rResp() - P = D. Hence
by the period relation,

u(D) = <PEE;RGSP</P:DWJ“¢>>
- s (L) L) - (L) (L),

g
L:{Z(m,/ wj—l,-/wj) ml,lZGZ}
i @ i 1<j<g
Therefore, there are integers m;,l; (1 < i < g) such that

() (L)~ ([ - ()

=1

m

for any 1 < j < g. By (1), the orthogonal subspace of C?9 to

</ wjv"'a/ Wj,/ wjv"'a/ wj) (1§]§g)
al ag b1 Bg

has dimension g, and by the period relation, this is generated by

</ W * /wj, /awjv T /%WJ) (1<j<g).

Hence there are by, ...,b; € C such that

g g
1/1—(271'\/—1)[1':2[)]'/ Wy, / 1/1—(27‘('\/—1)777,2' :Zb]/ Wy,
Qg j=1 Qs Bi j=1 Bi
and then

[ = exp /P way

is a meromorphic function on R such that } " pord p( f)-P = D. This implies the injectivity
of u.

Finally, we show that the surjectivity of u. Let o1 be a nonzero holomorphic 1-form, and
@1 be a point on R at which ¢, does not vanish. Then by Riemann-Roch’s theorem,

dimc HY(R, Qr(—Q1)) = dimc H*(R, Or(Q1)) +g—2=g — 1,

and hence there are nonzero ¢s € HO(R,Qp(—Q1)) and Q2 € R at which (y does not vanish.
By repeating this process, one take a base ¢1, ..., ¢4 of H°(R,QR) and Q1 ..., (g4 € Rsuch that

10



Pigl, - Pg, but not ; vanish at Q; (1 < i < g). Therefore, for Py, ..., P; in neighborhoods
of @1, ..., Q4 respectively, the jacobian of

g P; g P;
<p1,...,pg)H<Z/ @1,...,2/ ¢g>
i=1 7@ =17 Qi

is nonzero at (Q1,...,Q4), and hence by the implicit function theorem, the linear map p is
locally biholomorphic. This implies that this image Im(u) is an open subset of C9/L. By
Riemann-Roch’s theorem, for each divisor D with degree g on R, there is a nonzero element
f of H° (R, Og(D)), and hence

D+ Zordp(f)-P

PeR

is a sum of g points on R. Therefore, for a fixed point Py € R, the map
g
(Pr,sPy) = > Pi—g-Py
i=1

gives a holomorphic surjection from RY onto C1°(R). This implies that CI°(R) is compact,
and hence Im(y) is closed in the connected set C9/L. Therefore, Im(i) = CI°(R). QED.

Exercise 2. Fix Py € R. Then for each P € R, prove that there is a unique meromorphic
1-form wp = wp(z) on R such that

e wp is holomorphic except z = P, Pp;

e wp has simple poles at z = P, Py with residues 1, —1 respectively;
o / wp=0(1<i<yg).
a;

Further, using the generalized Riemann’s period relation, prove that

d (/ wz> = 21V —1w;(2).

Example. If R = C/L : genus 1; L = Z + Z7 (Im(7) > 0), then

H°(R,QR) = Cdz, Z:/ dz =T.
0

11



83. Schottky uniformization

3.1. Degeneration of Riemann surfaces

Genus 1 case. If f(z)(: degree 3, without multiple root) tends to a(z—a)?(z—3) (a # 0, #
), then the complex torus C¢(C) degenerates to a singular space obtained by identifying
2-points on the Riemann sphere (Figure).

For example, for f(z) = (2? — 2)(z + 1),

v = flz) & (Va + a3 +y) (Va2 + 23 —y) = (1 + 2)
=9 (Va2 + 23 +y)(Va? + 23 —y) =0 around (z,y) = (0,0),

where Va2 + 23 = 37, < 1/2 ) okt

k

Local degeneration. For a complex number ¢ such that 0 < || < 1, let D be the union of
the two annular domains:

U={zecClle <fz[ <1}, V={yeClle<yl <1}
by the relation xy = . Then under € — 0, D becomes the union of the 2 disks
{fzeCllal <1}, {yeCllyl <1}
identifying x = 0 and y = 0.

Ordinary double points. For a point P on a curve C,

P is an ordinary double point (or node)

def the local equation around P € C' is given by xy =0
for some formal coordinates x,y

<= P is a point of multiplicity 2 with distinct tangent directions

3.2. Schottky uniformization of Riemann surfaces

Schottky uniformization is to construct Riemann surfaces of genus g from a 2¢g holed
Riemann sphere by identifying these holes in pairs (Figure). More precisely, let

PGLy(C) ¥ GIL,(C)/ C*(-Ey)

which acts on P!(C) by the Mé&bius transformation, and let

Di1,...;Dyq C P!(C) : disjoint closed domains bounded by Jordan curves dD;,
Y1y Vg € PGLy(C) such that ~;(P1(C) — D_;) = the interior D of D;,

T © (31,..,7) : the subgroup of PGLy(C) generated by 71, .., 7,

o € |~ <]P>1(C) - O(D;’ U Dii)> :

vyel’ i=1

12



Then the Riemann surface

g
Ry (Pl(C) — U(D;-’UDO_Z-)> / dD; £ 9D_; (: gluing by ;)
1=1
= Qp/T

is called (Schottky) uniformized by the Schottky group I'. It is known as Koebe’s theorem
that any Riemann surface can be Schottky uniformized. Counterclockwise oriented loops
0D; and oriented paths from w; € 9D_; to v;(w;) € 9D; (1 < i < g) become canonical
generators, and we denote them by «;, ; respectively (Figure).

Remark. Denote by H? the 3-dimensional hyperbolic space. Then the quotient hyperbolic
3-manifold H?/T' becomes a handlebody whose boundary is Rr.

Exercise 3. Prove that I' is a free group with generators 71, ...,7,, and that the action of I’
on Qr is free and properly discontinuous. Further, prove that each 7; (1 < i < g) is uniquely

represented by
ti ot 1 0 ti ot \ 7!
o ) i b—g X
7"(1 1><0 si><1 1) mod(C™),

where t; € D, t_; € D°, and |s;| < 1 (hence ~; is hyperbolic (or loxodromic)), and that

ty; = lim ’}/Z-in(z) (Z S QF).

n—oo

t;, t_; are called the attractive, repulsive fixed point of ~; respectively, and s; is called the
multiplier of ;.

3.3. Explicit formula of periods

Theorem 3.1. (Schottky [S]) Assume that oo € Qr and that 3 |7/ (2)| converges uni-
formly on any compact subset of

Qr — U ~v(00).

yerl

Then we have
(1) Forn =1 and a point p € Qr — U, epv(00),

wnp(z) Z( dy(2) :Z( +(2) i

SO =P S ((z) = )"

becomes a meromorphic 1-form on Rr. If n > 1, then wy,, is of the 2-nd kind, and it has
only poles (of order n) at the point p on Rr induced from p. If n = 1, then wy, is of the
3-rd kind, and it has only simple poles at p, o0 with residues 1, —1 respectively. Furthermore,
forn >0,

D o A(@)dy(z) =Y ()" A (2)dz

el vel

13



becomes a meromorphic 1-form on Rp which has only pole (of order n+ 2) at 3G.
(2) Fori=1,...,g9,

wilz) = o F ) <Z_%y<ti>‘z—f;<t_i>>dz

give a basis of HO(Rr,Qg,.) satisfying that / wj = 04j.

673

(3) For 1 <i,j<gandvy €T, put

S (if i=j and vy € (%)),
bij(v) = (i =) (i = ()
(ti = y(t-5))(t—i = ()

where t;, t_; are the attractive, repulsive fixed points of ~; respectively, and s; is the multiplier

of vi. Then we have
exp (27?\/ —1zij) = H Yii(7),
Y€iN\L/ ()

where Z = (zi;); ; is the period matriz of (Rr; (o, Bi)i<i<g)-

(otherwise),

Proof. The assertion (1) is evident except the convergence of wy, ,(z) which follows from
the assumption and that the action of I' on Qr is properly discontinuous. Further, w; ,(2)
has simple poles at p,oc with residues 1, —1 respectively, and satisfies that fai wyy = 0
(1 <i < g). Then by Exercise 2,

72((2 d
2rv —1lwi(z) = / Z 7 ; (; is a point on 0D _;

Ser 7
-3 ””zf:; )
B »yze; <Z - (71%')(@') Cz— i(@) dz
i ’YGFZ/:M % < 7%"“)((@) = ('Y}Y?)(Ci)> dz,

and since t4; = lim,,_ o ’yii"(w,-) € D3, (Exercise 3), we have

wilz) = 2wr 2 <z—;<ti>‘z—i<t_i>>dz’

YL /(i)

which proves (2). QED.

Exercise 4. Prove that fai wip = 0 (1 < i < g), and check that w; is I-invariant and

fai w.] = 5ZJ

14



Exercise 5. Prove (3) of Theorem 3.1.

Proposition 3.2. Assume that Qr > oo, and that t+; are fized and s; are sufficiently small,
then the assumption in Theorem 3.1 is satisfied.

Proof. For 2 disks D;, D; C C with radius r;, r; respectively, put

pi;j @ the distance between the centers of D; and D;;,
2473 = 02"
Ki; = 47’2'27}2' —-1>0,
1
L., — <1
s VIt EKij+/Kij

Then K;; and L;; are invariant under any Mobius transformation, and r; < L;j; - rj; if
D; C Dj. Under the assumption, one can take disks D41,..., D+, such that the sum of L; ;
(1,7 € {£1,...,+g},i # j) is smaller than 1. Hence by the above, there is a positive constant
C such that if v = Hi:l Yr(s) € I' is expressed as

ay by xy. [ @ by
( ¢y dy ) med(C )7< ¢y dy > € 812(C),

then
1 -1
T <O H L_j(s) k(s+1)-
ey
s=1
Therefore,
1 o
S psC X (Xha) <o
~yer—{1} m=0 \ i#j
and hence ) )
DAt Y
Ser (2) — [
yel'—{1}

satisfies the condition since d(z) def min{|z—~"1(c0)|;¥ € '} > 0 is bounded on any compact
subset outside (J, e 7(00). QED

Remark. Schottky [S] gives a (more geometric) convergence condition on > |v/(2)] as
follows: all dDy; can be taken as circles (in this case, I' is called classical) and there are
2g — 3 circles Cy, ...,Cyy_3 in F =P(C) — UL, (Df U Dii) satisfying that

o C1,...,Cz_3, 0D41,...,0D+4 are mutually disjoint;
o (,...,Cy_3 divide F' into 2g — 2 domains Ry, ..., Rag_o;

e each R; has exactly three boundary circles.

15



Variation of forms and periods. Let I' = (v1,...,74) be a Schottky group of rank g as
above, and put IV = (71, ...,74—1) which is a Schottky group of rank g — 1. If the multiplier

Vg(2) —tg L r—ty
z—tg  y(z) —ty
the product of local coordinates around t,,%_, respectively

Sg =

of 74 tends to 0, then

o Re — the singular curve ]Sqw with unique singular (ordinary double) point
r obtained from Ry by identifying t, and t_;
1 1 0
o 2my/—1 wi(z) = Z — dz € H” (Rr,QR,)
\z=t) 2= (-)
e/ (i)
1 1 > .
Z ( — dz (i <g),
— (i — (=
) ety \F ) 2 ()

1 1
— dz+--- —
z—t4 z—t_g> ar (i=9)

which has a pole at the ordinary double point ¢, =¢_, on ép/ if i = g;

the multiplicative periods of Rpr (4,5 < g),

e (Fay’s formula [Fay]) p;; — { 0 (i=j=g).

Therefore, on the complex geometry of ]:’;pr, it is natural to replace the sheaf of holomorphic
1-forms on Rys by that of 1-forms 7 on Rps holomorphic except for simple poles at t,,t_g4
satisfying that Res, () + Res;_, (1) = 0 (see 5.2 below).

Remark. We can obtain variational formula under other degenerations (see [I3]).

3.4. Fractal nature of Schottky groups (cf. [MumSW])

Limit set. The limit set Lr of I' is defined to be the complement of Qp in P!(C). When
we take limits of Schottky groups such as the above domains Dy; C P!(C) are tangent, their
limit sets become fractal pictures. These limiting process is also important in the study of
degeneration of Rr and deformation of hyperbolic 3-manifolds.

Let T" be a Kleinian group generated by 1,72 € PGL2(C) such that there are tangential
disks D1, Dio C PY(C) satisfying

% (P(C) — D—;) = Dy, ~;({tangential points}) = {tangential points} (i = 1,2),
and consider the following cases.

Case 1. Dy U D4y C PY(C) is homeomorphic to

{zeCilz—2(1+V-1)| <1} U{z € C;|z — £(1 - V-1)| < 1}.
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Then I is called a once-punctured torus group, and Rp becomes a union of two tori at one
point (cf. [MumSW, p.189-190]).

Case 2. Each of Dy, Diy C P!(C) is tangent to other three disks. Then Lr becomes an
Apollonian gasket, and Rr becomes a union of two degenerate tori at one point (cf. [MumSW,
p.205]).

Case 3. Dy U Dy C PY(C) is homeomorphic to
{zeC;lz—(£1+V-1)| <1} U{z € C;|z — (x1 —V-1)| < 1}.

Then Rr becomes a union of two spheres at three points (cf. [MumSW, p.216]).

17



84. Arithmetic uniformization

4.1. Periods as power series

First, we calculate the periods p;; given in Theorem 3.1 (3) (cf. Exercise 5) as power
series over Z by regarding the fixed points and multiplier t;,s; of +; as variables x4, y;
respectively. Let ['a be a subgroup of PG L9 generated by

-1
(1) (3 2) (5 ) amon n2im

Put

4 — Z[(xi—xj)(xk—xl) (i,j,k,l € {£l,..,+g} )}

(i — ) (xk — z5) mutually different
AA = AO[[y17 "'7yg“7

and let Ta be the ideal of Ax generated by y1, ..., y,. By definition,

pij = H Yij (6),
SN\ A/ (65)
where
(@) { b o — oy o€
Vii (@) = x; — () (2= — d(z—; )
J = 0@ s olay) Cthervise)
Put ¢_; def gbi_l (1<i<g). Then
- o(1) # £i, o(n) # £J,
‘I>ij_{¢_¢0<1>"'¢0<"> o(k) £ —o(k+1) (1<k<n—1) }

gives a set of complete representatives of (¢;)\I'a/(¢;). If a € x; + In with j # —i, then

i) = (- = (1o},

o —T_; o —T_;
Hence if ¢ = do(1) -+ Po(n) € Pij, then ¢(z+;) € T5(1) + Ia and

(i) — p(x_j)
(To(1) — T—o1)) 2 (@ (5) — &' (2—5)) Yo (1)

(@' (25) = v_5(1) = Yo(1) (¢ (x5) — 2o1))) (@' (2—j) — T_o(1) — Yo(1) (¢ (2—5) — To(1)))
; def

(qb = ¢o‘(2) o ¢o‘(n))

= ... eI

by inductive calculus. Therefore,

(@i = P @i = dla—y)) _ | (@i = 2-)(z)) = plr—;))
(@i — ¢(x—5)) (2 — P(x)) (@i — ¢(x—5)) (2 — P(x))

€ 141X,
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and hence p;; are elements of Ax calculated as

w_i)(x; — v—j)(xx — z_g)°
Pig = 1+k|§¢;’] i — xp)(w_; — xp) (@ — @ k)(l’—]_x_k)y‘kl—i_ ’
where
O ) o
Ci;i — Ti — T )Xy — X5 . .
] o)) CFD

4.2. Tate curve and Mumford curves

In order to study geometric meaning of the above calculation, we review the theory of
the Tate curve and its higher genus version called arithmetic uniformization theory.

Tate curve. Recall that an elliptic curve C/L is defined by the equation (see 2.1):
y* = 42® — 60E4(L)x — 140Es(L).

Therefore, if

r = (2rV/—1)? <X+1—12> y = (V-1 (2Y +X),
BE@) 1 _ 35E4(L) 5E4(L) 1
“T e/ ® T e/ d@ey/on 1

then the above equation is equivalent to
Y24 XY = X3 + a4 X + as.

Furthermore, if L = Z 4+ Z7 and ¢ = 62“\/__17, then by the calculation of the Eisenstein
series (see Exercise 6 below):

—1)2k X
Z i — QC(Qk) + m Za2k—1(n) qn (k > 1)7
=1

2k (2k —1)!
ueL—{0}
where .
¢(2k) o Z 1 the zeta values, and oo _ def Zd% 1
~ n2k 2k—1(
we have
a4(q) = _520'3(71) qn:—5q—45q2_|_7
n=1
1 & . ,
aslq) = —35 ) (503(n) +To5(n)) ¢" = —¢ = 23¢" +
n=1



Exercise 6. Prove that

(2my/—1)%

¢(2k) o 2(2k)!

By,

o n
By, is the n-th Bernoulli numbers given by i g Bn:E—
et —1 n!

n=0
4 6

71.2
and

1 2021/ —1)% & .
Z m = 2C(2k) + ﬁ Zagk_l(n) q (k > 1),
(m,n)€Z2—{(0,0)} T on=1

from the well-known formula:

7rcot7m=—+2<a+m a_1m> <<:> sz_zH( n2ﬂ2>>

by substituting = to 2my/—1a, and differentiating the formula successively and substituting
nT to a respectively.

Exercise 7. Show that a4(q) and ag(q) belong to the ring

Mmg{Z%fcwﬂ}
n=0

of formal power series of ¢ with coefficients in Z.
The Tate curve is the curve over Z[[g]] defined by

y? +xy = 2° + as(q)z + ag(q).
Then Tate proved the following:

Theorem 4.1. ([Si, T])
(1) The Tate curve becomes an elliptic curve over the ring

Z((q)) < Z[[q]] [1/q] = {Z%q

n>m

meEZ, anZ}

of Laurent power series of q with coefficients in Z.
(2) Recall o1(n) = 3y, d, and put

X(u,q) = ZW—QZQ ;

neZ

Y(”)Q) = Z(l—qu +ZO'1

neZ
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Then z — (X(e%“ﬁz7 2™V IT) y (e2mV -1z 62W\/TIT)> gives rise to an isomorphism between

C/L and the elliptic curve E; over C obtained from the Tate curve by substituting q =
627“/__17.

(3) Let K be a complete valuation field with multiplicative valuation |- |, and let ¢ € K*
such that |q| < 1. Then by the substitution the variable ¢ — q € K*, the series as(q) and
ag(q) converge in K, and the Tate curve gives an elliptic curve E; over K. Further, we have

an isomorphism:
K*/{a) — E4(K)
—

u mod(q)

Proof. (1) The discriminant A of the Tate curve is given by

—ag(q) + as(q)® + 72a4(q)as(q) — 64as(q)® — 432a4(q)?

= q—24¢°>+---: a formal power series with integral coefficients
o
in fact q H(l —¢M* : a cusp form of weight 12 for SLo(Z).
n=1

Therefore, the Tate curve is smooth over Z[[q]] [1/A] = Z((q)).
(2) First, note that the following hold:

o1(2) . q"u 1 def o .
s - Tl (20 Y i)

nez
o7 (2) _ q"u(l + q"u)
(2m/—1)3 oper (1—qmu)3

Because the right hand sides are ¢-series which are invariant under u + qu, hence invariant
under z — z + 1,z + 7, and they have the expansions of z as

1 q" 1
Y s~ 2(0) + 0(2) = ———— + O(2)
(I—u)? 12 Z < (1—q")? (2my/=12)?

u(l 4 u) q" 1 + q -2
+0(z) =—— + 0(2)
1—u Z 1—q (2my/=12)°
which are equal to those of the left hand sides respectively. Therefore,
z 1 pL(2) 1
X = - = — - — = X s s
Qry—12 12 (2m/-12 12 (,q)
Y = O —— 1
C202my/—1)3 2(2my/—1)2
ACHON

22mV/-1P  2(2my/ 1)
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(1—q"u)?® 24
= Y(u,q).

1 "u(l+q"u) 1 q"u
= 5%;1—__2(1—7u+81(®
n

Asseenin 2.1, z+ L — (z = pr(2),y = ¢} (2)) is an isomorphism from C/L onto the elliptic
curve y? = 423 — 60F,(L)x — 140Eg(L), and hence

2+ L (X =X(u,q),Y =Y(u,q))

gives an isomorphism C/L = E;.

(3) By substituting the variable ¢ — ¢ € K* with |q| < 1, A = q — 24¢® + - - - satisfies
that |A| = |¢|] # 0, and hence E, is an elliptic curve over K. By (2), X(u,q) and Y (u,q)
satisfies the equation of the Tate curve:

Y (u,q) + X (u,q)Y (u,q) = X (u,q)* + as(q) X (u, q) + ag(q)

for all complex numbers u, ¢ in a certain convergence domain, and hence this equation holds
as formal power series in ¢ with coefficients in Q(u). Therefore, by substituting the variable
q — q € K* with |g| < 1, one can see that the map in (3) is well-defined, and is evidently
injective. The addition law on the Tate curve is given by

R:(xlayl) (2217273)7 P1+P2:P3

(g — SE1)2$3 = (y2— y1)2 + (Y2 —y1) (w2 — 1) — (22 — 5131)2@1 + x2),
- { (2 —z1)ys = (—(y2 —y1) + (z2 — 1)) 13 — (Y172 — Y271),

if 1 # x9. Hence by (2), this holds if z; = X(u;,q), vi = X(u;,q), (i = 1,2,3) with
uiuy = ug for all complex numbers uj,us,q in a certain convergence domain, and hence
holds as formal power series in ¢ with coefficients in Q(u1,ug). Therefore, by substituting
the variable ¢ — ¢ € K* with |g| < 1, one can see that the map in (3) is a homomorphism.
We omit the surjectivity of the map which is most hardest part of the proof. QED.

Remark. Similar argument to the proof of Theorem 4.1 (3) is used in [I1] to show that p-adic
theta functions of Mumford curves give solutions to soliton equations.

Mumford curves. Mumford [Mu2] gave a higher genus version of the Tate curve over
complete local domains as an analogy of Schottky uniformization theory, i.e., for a com-
plete integrally closed noetherian local ring R with quotient field K, and a Schottky group
I' € PGLy(K) over K which is flat over R, he constructed a Mumford curve over (R C)K
which is a proper smooth curve Cr over K obtained as the general fiber of a stable curve over
R uniformized by I' such that its special fiber consists of (may be singular) projective lines
and its singularities are all k-rational (k is the residue field of R). Furthermore, he showed
that T' — Cr gives rise to the following bijection:

Conjugacy classes of flat ~ Isomorphism classes of
Schottky groups over (R C)K Mumford curves over (R C)K

If K is a complete valuation field, then any Schottky group I" over K is flat over its valuation
ring, and it is shown in [GP] that Cr is given as the quotient by I" of its region of discontinuity
in K U{oo} (important examples of rigid analytic geometry).
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4.3. Arithmetic Schottky uniformization

Stable curves. A stable curve of genus g > 1 over a scheme S is a proper and flat morphism
C — S whose geometric fibers are reduced and connected 1-dimensional schemes Cy such
that

e (s has only ordinary double points;

e Aut(Cy) is a finite group, i.e., if X is a smooth rational component of Cy, then X meets
the other components of Cy at least 3 points;

e the dimension of H'(Cj, O¢,) is equal to g.

Degenerate curves and dual graphs. A degenerate curve is a stable curve whose ir-
reducible components are (may be singular) projective lines. For a degenerate curve, by the
correspondence:

its irreducible components <+—> vertices
its singular points <+— edges

(an irreducible component contains a singular point if and only if the corresponding vertex
is contained in (or adjacent to) the corresponding edge), we have its dual graph which
becomes a stable graph, i.e., a connected and finite graph whose vertices has at least 3
branches (Figure). For a degenerate curve C' with dual graph A,

the genus of C = rankzHi(A,Z)

= the number of generators of the free group m(A).

Since any triplet of distinct points on P! is uniquely translated to (0,1, 00) by the action
of PG Lo, for a stable graph A, the moduli space of degenerate curves with dual graph A has

dimension
> (deg(v) — 3),

v: vertices of A

where deg(v) denotes the number of branches (# edges) starting from v. In particular, a stable
graph is trivalent, i.e., all the vertices have just 3 branches if and only if the corresponding
curves are maximally degenerate which means that this moduli consists of only one point.

Exercise 8. For any stable graph A, prove that

Z (deg(v) — 3) 4 the number of edges of A = 3 (rankzH1(A,Z) —1).

v: vertices of A

General degenerating process. (Ihara and Nakamura [IhN]). For a stable graph A with
orientation on each edge,

g € rankzHi(A,Z),
PY(C) (v : vertices of A).
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and for each oriented edge e (v_, = v,) of A, let

Ve 4 the end point of e,
V_e Cf the starting point of e,
Ye @ a hyperbolic element of PGLo(C) which gives v, : P,_, = P,,,

te € P, :the attractive fixed point of .,
t_e € P, ,:the repulsive fixed point of v..
Fix a vertex vy of A, and put

r &« {yg . 722 ‘ er : edges, i € {41} such that el ... elf € Tl(A;Uo)}.

Then under the assumption that the multipliers s, of all v, are sufficiently small,
e I'is a Schottky group of rank g;

o If co € Qr, then > |7(2)| converges uniformly on any compact subset of Qr —
U’yEF W(OO)ﬂ

e Rpr = Qr/T is a Riemann surface of genus g obtained from holed Riemann spheres P,
(v : vertices of A) gluing by 7. (e : edges of A);

and hence

se — 0 (e : edges of A)

te =1_ .
= Rr — the degenerate curve Cy = U P, c © with dual graph A.
- (e : edges of A)
Since P! has only trivial deformation, Rr gives a universal deformation of Cj, and hence
varying t+. as the moduli parameters, s, as the deformation parameters, R make an
open subset (of dimension 3g — 3 by Exercise 8) of the moduli space of curves of genus g.

Arithmetic Schottky uniformization. An extension of this process in terms of arithmetic
geometry (unifying complex geometry and formal geometry over Z, hence rigid geometry)
is the following arithmetic Schottky uniformization theory which also gives a higher
genus version of the Tate curve:

Theorem 4.2. ([I3], (1)-(3) were already proved in [IhN] for maximally degenerate case
without singular components). Let

def

Ay = the coordinate ring of the moduli space (i.e., the ring of moduli parameters)
over Z of degenerate curves with dual graph A,
def
An % Aglly. (e edges of A)]].

Then there exists a stable curve Ca (called the generalized Tate curve) over Ap of genus
g def rankz H1 (A, Z) satisfying:
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(1) Ca is a universal deformation of the universal degenerate curve with dual graph A.

(2) By substituting complex numbers ti. to the moduli parameters and s, € C* to y. (e
are edges of A), Ca becomes a Schottky uniformized Riemann surface if se are sufficiently
small.

(3) Ca is smooth over Bao = Aa [1/ye (e : edges of A)], and is Mumford uniformized by
a Schottky group over Ba. Furthermore, for a complete integrally closed noetherian local ring
R with quotient field K and a Mumford curve C over (R C)K such that A is the dual graph of
its degenerate reduction, there is a ring homomorphism Ax — R gives rise to Ca®4, K = C.

(4) Using Mumford’s theory [Mu3] on degenerating abelian varieties, the generalized Ja-
cobian of Ca can be expressed as

GY, [((pijh<i<g | 1< <9); Gm L the multiplicative algebraic group,

where the multiplicative periods p;; of Ca (called universal periods) are given as computable
elements of BA.

‘Generalized Tate curves‘
complex geometry v Ny rigid geometry

Schottky uniformized

) ‘ Mumford curves ‘
Riemann surfaces

Sketch of proof.

e Step 1 of constructing Ca is to give a Schottky group I'n over Ba as in the above
general degenerating process, and show that I'a is flat over Ax (note that this fact
together with the result of [Mu2] cannot imply the existence of Ca since Aa is not
local).

e Step 2 is, following argument in [Mu2], to show that the collection of sets consisting
of 3 fixed points in P! of I' — {1} gives rise to a tree which is the universal cover of A
with covering group A, and to construct Ca as the quotient by I' of the glued scheme
of ]P),laxA associated with this tree using Grothendieck’s formal existence theorem.

e In order to give a power series expansion of p;;, use the infinite product presentation
by Schottky [S], Manin and Drinfeld [ManD] of the multiplicative periods given in
Theorem 2.2 (3).

Example. When A consists of one vertex and g loops, the universal periods p;; are given in
4.1.

Remark. Denote by

T, : the Teichmiiller space of degree g,
Sy the Schottky space of degree g

(the moduli space of Schottky groups with free g generators),
H, : the Siegel upper half space of degree g.
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Then

T, 2 H 9 : the period map (transcendental)
{ 1 exp(2mv/-1")
Sy — H,/ Z9(9+1)/2 . computable as power series
) 3
My(C) -5 H,/Spag(Z)  :the Torelli map (algebraic).

Problem. When any vertex of A has just 3 branches (i.e., the corresponding degenerate
curve is maximally degenerate), the moduli space of degenerate curves with dual graph A
consists of one point, and hence Ay = Z. Then express integral coefficients of

pij € Aa =Z[[ye (e : edges of A)]]

by using some arithmetic functions (cf. [MaT] for the genus 2 case).

26



§5. Moduli space of algebraic curves

5.1. Construction of moduli spaces

A scheme is a locally ringed space which is locally given by the affine scheme:
Spec(A) & {prime ideals of A} > p— A, ) {a/s|a€ A, se€ A—p}

associated with a commutative ring A with unit 1 (the category of affine schemes is con-
travariantly equivalent to that of commutative rings with unit 1). A scheme X over a scheme
S is a scheme with morphism X — S.

The moduli space of curves is a space representing

the isomorphism classes of curves.

More precisely, if M, is a fine moduli of curves of genus g, then

My(S) def {morphisms from S to My} (S :schemes)
functorial . .
= {isomorphism classes of curves over S of genus g}

Caution! There is no fine moduli as an scheme since there are curves with nontrivial au-
tomorphism (for example, hyperelliptic curves defined by 32> = f(x) has a nontrivial
automorphism = — z, y — —y). Because if M, is a fine moduli scheme, then the identity
map on M, corresponds to a curve C over M, which is universal, i.e., for each scheme S,

{morphisms from S to My} <— {curves over S with morphisms to C}
S — Mg — Cxm,S—C

Therefore, any automorphism on a curve over S must be the identity map.
Solutions.
(S1) Construct the fine moduli as an scheme by considering additional structures on curves.

(S2) Taking the categorical quotient of the above fine moduli, construct the fine moduli as
an algebraic stack, the scheme-theoretic analog of orbifolds, which is represented as

[U/R] : the quotient of U by R,

where U, R are schemes with étale morphisms s, : R — U and a morphism pu :
R xyts R — R such that (s,t) : R — U x U is finite and s, t, p form a groupoid. For
a scheme S, [U/R] (S) = Hom(S,U/R) is the category given by

Ob ([U/R(S)) = Hom(S,U),

Mor ([U/R] (S)) &t {a € Hom(S, R) giving soa — to a},

and R gives the equivalence relation by pu.
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(S3) Taking the geometric quotient of the above fine moduli, construct the coarse moduli as
an scheme.

Moduli of elliptic curves.

e Analytic construction:

(S1) If E is an elliptic curve over C, and ¢ is an isomorphism Z®? = H;(FE,Z) such
that ¢ is canonical, i.e., t(e1),t(e2) intersects as the z, y-axes, then the ratio

o)/ )

is independent of w € H'(E,Qg) — {0} and belongs to the Poincaré upper half plane
H,. Therefore, by the correspondence:

Hi>717 & (C/(Z+Z7); t(er) =1,u(e2) =7),

H; becomes the fine moduli space of elliptic curves E over C with canonical isomor-
phism Z%? 5 Hy(E,Z).

(S2) By (S1), the fine moduli stack of elliptic curves over C is given by the complex
analytic stack, i.e. orbifold
[H1/SL2(Z)] .

(S3) Since

the elliptic curves y? = 4z — yz; — B; (i = 1,2) over C are isomorphic
& there are a,b,c¢,d, e € C with a,c # 0 such that
xo = axy + b : order > —2 at the origin,
yo = cy1 + dx1 + e : order > —3 at the origin

& there are a,c € C* such that a® = %, 29 = az1,y2 = ey
3

o

7 f 2
o3 —27p2 O Vi
(note that o — 2782 # 0) ,

< the j-invariants =4z} — ayz; — B; (i = 1,2) are equal

the coarse moduli scheme of elliptic curves over C becomes the affine line over C, and
the j-function

def (60F4(Z + Z1))3
~ (60E4(Z + Z7))3 — 27(140E6(Z + Z7))?
1

1
— (2 4744 4 196884q + 21493760¢° + - - - (q‘ﬁfe2“V—JT>
1728 \ g

3(7)

gives a biholomorphic map from the geometric quotient Hy/SLs(Z) onto C.
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e Algebraic construction:

(S1) For complex numbers p # 1, (3 = 62”\/__1/3, ¢2, put

E(u) def {(zo:21:39) € PYC) | 2 + 23 + 23 = 3uzoz1x2} : Hesse’s cubic
an elliptic curve over C with origin (1 : —1 : 0) containing
3-division points (1: —3:0),(0:1: =3),(=8:0:1) (5 = 1,(3,{%)
Then p +— (E(p) with the 3-division points) gives a bijection:
isomorphism classes of elliptic curves over C

C - {17 (3, gg} 5 with symplectic level 3 structure

(2/32)* 3 EB| Y (PeE|3P=0}
=~ H1/I‘(3),

where I'(3) denotes the principal congruence subgroup of SLs(Z) of level 3. Therefore,
C- {1, (3, Cg} has a natural model over Z [1/3, (3] as the fine moduli scheme of elliptic
curves with level 3 structure, and this can be compactified to P! by adding the 4
points 1, (3, C??, oo which correspond degenerate curves. Nakamura [N] gave this higher
dimensional version, i.e., constructed a compactification of the moduli of principally
polarized abelian varieties with level structure as an moduli space.

(S2) The fine moduli stack over Z [1/3, (3] is given by the quotient stack of the above
model in (S1) by SLs (Z/3Z).
Scheme theoretic construction:

(S1) If E is an elliptic curve over a scheme S with O-section e : S — E, then
H®(E,0(3-¢(9))) : the space of generalized elliptic functions

defines an embedding E — ]P’%. Therefore, by the theory of Hilbert schemes, there is
a fine moduli scheme #1 over Z classifying elliptic curves with embedding into IP’% as
above.

(S2) The fine moduli stack over Z of elliptic curves is given by the quotient stack

[H1/Aut(P?)] = [H,/PGL3]; PGL, Y GL,/G,.

Exercise 9. Prove that for 7 € Hy,

{v € SLa(Z) | 7(r) =7}

)
<p ( _1 (1) p_1> : order 6 (if 3p € SLa(Z) such that 7 = p((3)),

) p_1> :order 4 (if 3p € SLa(Z) such that 7 = p(v/—1)),
>> : order 2 (otherwise).
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Construction of moduli for genus > 1. There are 3 approaches using

1. Teichmiiller theory: Fix a Riemann surface Ry of genus g > 1. Then the Teichmiiller
space of degree g is defined by

7 def (R, h) R : Riemann surfaces of genus g
g ’ h : orientation preserving diffeomorphisms Ry — R

i (R,h) ~ (R,1) & b oh s homotopic to a biholomorphic map,

and the Teichmiiller modular group or mapping class group of degree g is defined by

I1, def {homotopy classes of orientation preserving diffeomorphisms Ry — Ro}

which acts on T, as pu(R,h) = (R,hop) (u € Il;) properly discontinuously. Then the
quotient orbifold [T} /14| exists and becomes the moduli space of Riemann surfaces of genus
g. Teichmiiller proved that Tj is homeomorphic to R59~6 and becomes naturally a complex
manifold of dimension 3g — 3 by using the theory of quasiconformal maps (see [IT]). Since
Ty is connected and simply connected,

™1 ([Ty/T]) = 1,
and these are canonically isomorphic to
Aut™ (m1(Rp))/ Inn (m1(Ro))

where Aut™ (71 (Rp)) denotes the automorphism group of m(Ry) preserving the (alternating
and bilinear) intersection form on H; (Ry,Z) = 71 (Rp)/ [m1(Ro), 1 (Ro)], and Inn (71 (Rp))
denotes the inner automorphism group.

Caution! Royden showed that if g > 1, then Aut(7;) = II;, and hence the T, is not
a homogeneous space. Therefore, one cannot regard the Teichmiiller modular group as a
discrete subgroup of a Lie group.

2. Moduli theory of abelian varieties: A principally polarized abelian variety
(A, ) is a pair of an abelian variety A, i.e., a proper (commutative) algebraic group and an
isomorphism A — A (: the dual abelian variety of A) induced from an ample divisor on A.
There exists a moduli space A, of principally polarized g-dimensional abelian varieties, and

Ag(C) = [Hy /Spag(Z)].
Here
H, = {Ze My(C)| Z:symmetric, Im(Z) > 0}
:  the Siegel upper half space of degree g,
def 0 F 0 FE
Spay(Z) {GGM z 'a( g)tcz< 9)}
29( ) 29( ) _Eg 0 _Eg 0

the integral symplectic group of degree g over Z

acts on Hy as Z — (AZ + B)(CZ + D)™ ! for G = <é IB;>7
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and Z/ ~ € Hy/Spag(Z) corresponds to the pair of an abelian variety CY9/L, where L =
Z9 + 79 - Z is the lattice in CY generated by the unit vectors e; and the i-th row vectors z; of
Z), and the polarization associated with the alternating bilinear form ¢ on L x L such that

¢(ei7 e]) = ¢(ZZ',Z]‘) = 07 w(esz) = 52]
By Torelli’s theorem, by the correspondence:

proper smooth curves C
—> their Jacobian varieties Jac(C') with principally polarization
induced from the theta divisor {P +---+ P,_1 — (9 —1)Py | P, € C},

the (coarse) moduli of proper smooth curves is realized as a subvariety of A,. This fact
gives rise to the Schottky problem which means to characterize Jacobian varieties among
general abelian varieties, or to describe explicitly the subvariety of A, consisting of Jacobian
varieties.

3. Geometric invariant theory: For a proper smooth curve C over S of genus g > 1,
the spaces H° (Cs, Q‘é’f’) (s € S) have dimension 5(g — 1) by Riemann-Roch’s theorem, and

give an embedding C' — ]P"Zg_G. Then by the theory of Hilbert schemes, there exists a fine

moduli scheme H, over Z classifying tricanonically embedded curves C — ]P"gg _6, and hence

the quotient stack
def

My = [Hg/PGLE)g—E)]
is the fine moduli space of proper smooth curves of genus g. Since PG L5,_g is smooth and the
functor S — Isomg(C, C") is represented by a finite and unramified scheme over S for curves
C,C" over S, by an étale slice argument, M, becomes an algebraic stack. Furthermore,
by showing that each point on H, is stable under the action of PGLs4_5, it follows from
geometric invariant theory [FKM] by Mumford that the geometric quotient H,/PGLsg—5
exists and gives the coarse moduli scheme of proper smooth curves of genus g.

Dictionary for the moduli stack. In what follows,

My €f the moduli stack over Z of proper smooth curves of genus g > 1.

Then
M,4(C) = the quotient orbifold [T,/I1,],

and for schemes (more generally algebraic stacks) S,

M, (S) = the category of proper smooth curves over S of genus g

= The identity map on M, gives the universal curve C over M,.
Furthermore,

an object a on (over) M,
<= asystem {ag} of objects on S for proper smooth curves over S of genus g

such that {ag} are functorial for S.

Dimension of the moduli.
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Analytic method: Since Aut(H;) = PSLy(R), by the theory of Fuchsian models, for
Riemann surfaces R = Hy/m(R), R = Hy/m1(R') of genus g > 1,

(R; 7T1(R) — PSLQ(R)) = (R, 7T1(R/) — PSLQ(R))
<= m1(R) and 7 (R’) are conjugate in PSLy(R).
Therefore, under fixing a Riemann surface Ry of genus g,

conjugacy classes of injective homomorphisms
Ty =< v:m(Ry) = PSLy(R) satisfying that ,
H,/u(m1(Rp)) are Riemann surfaces of genus g

and the real dimension of the right hand side is

dimgr (PSL2(R) x (#{generators of m1(Ry)} — #{relations in m(Ry)} — 1)
= 6g —6.

Furthermore, under the assumption that for Schottky uniformized Riemann surfaces
R, R’ of genus g > 1,
(R = QF/P;F — PGLQ(C)) = (R/ = QF//F/; I — PGLQ(C))

b
TR T and T are conjugate in PGLy(C),

by letting F; be the free group of rank g, we have

My(C) = S 1: Fy — PGLy(C) satistying that

conjugacy classes of injective homomorphisms
/Aut(Fg)7
(Fy) are Schottky groups

and the complex dimension of the right hand side is

dimc(PGL2(C) x (#{generators of Fy} —1) =3g — 3.
Algebraic method (deformation theory [HM)]): For a field k,

def
Ao = E[]/(€?),
C : a proper smooth curve over k of genus g > 1,
{Us} : an affine open cover of C,

and let ¢, be a first-order infinitesimal deformation of C, i.e., Ag-linear ring homo-
morphisms

OUa x Spec(Ap) ‘ (UanUg) — OUB x Spec(Ap) ’(UQOUB)

satisfying that

{ Pary = Py © Pag on Uy NUg N U, (: the cocycle condition),
SDQB|(UaﬂUg)XSpeC(k) is the identity.
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Then the k-linear homomorphisms Dog : Ow,nvy) — Owanu,) given by pas(f) =
f+eDus(f) satisfies that

Dap(f-9) = f - Dap(9) + 9 Dap(f); Dar(f) = Dpy(f) - Dap(f),

and hence {D,s} defines an element of the first cohomology group H(C,T¢) of the
tangent bundle 7 on C. Since dimy(C) = 1, the obstruction space is H?(C,T¢) =
{0}, and hence the tangent space of M, ®z k at the point [C] corresponding to C'is
isomorphic to H'(C, T¢). Therefore,

the dimension of the tangent space of M, ®z k at [C]
= dimy H' (C, To)
= dimy H° (C, 9?32) (by Serre’s duality)
= 3¢9 —3 (by Riemann-Roch’s theorem and that deg(Qc) =29 — 2 > 0).

Remark. For proper smooth curves C,
HY(C,To) = Ext!(Oc, Te) = Ext!(Qc, Oc),

and the last group also classifies first-order infinitesimal deformations of stable curves.

5.2. Stable curves and their moduli space

Stable curves. Recall that a stable curve of genus g > 1 over a scheme S is defined to
be a proper and flat morphism C' — S whose geometric fibers are reduced and connected
1-dimensional schemes Cs such that

e (s has only ordinary double points;

e Aut(Cy) is a finite group, i.e., if X is a smooth rational component of Cy, then X meets
the other components of Cy at least 3 points;

e the dimension of H!(Cs, Oc,) is equal to g.

For a stable curve C' over S (may not be smooth), it is useful to consider the dualizing
sheaf (or canonical invertible sheaf) wg/g on C which is defined as the following conditions:

® wc/g is functorial on S

e if S = Spec(k) (k is an algebraically closed field), f : C" — C be the normalization
(resolution) of C, x1, ..., Ty, Y1, ..., Yn, are the points of C’ such that z; = f(z;) = f(v;)
(1 <4 < n) are the ordinary double points on C, then wc/g is the sheaf of 1-forms n
on C' which are regular except for simple poles at z;,1; such that

Resg, (1) + Resy, (n) = 0.
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Then it is shown by Rosenlicht and Hartshorne that wg/g is a line bundle on C; Riemann-
Roch’s theorem holds for the canonical divisor corresponding to w¢, and

dim H'(Cy,0¢,) = dim H°(Cy,we,).

Theorem 5.1. (Deligne and Mumford [DM]) There ezists the fine moduli space My (called
Deligne-Mumford’s compatiiﬁcation of Mgy) as an algebraic stack over Z classifying

stable curves of genus g > 1. M, is proper smooth over Z, and contains M, as its open
dense substack.

Sketch of proof. The construction of M, is similar to that of M, by replacing Q¢ with

dualizing sheaves w¢o. The properness of ﬂg follows from the valuative criterion and the
stable reduction theorem: Let R be a discrete valuation ring with quotient field K, and
let C' be a proper and smooth curve over K of genus g > 1. Then there exists a finite
extension L of K and a stable curve C over the integral closure R; of R in L such that
C®pr, L=C®kL.

Irreducibility of the moduli.

As an application of Theorem 5.1, Deligne and Mumford [DM] proved the irreducibility
of any geometric fibers of Mg by applying Enriques-Zariski’s connectedness theorem to the
proper and smooth stack Mg over Z whose fiber over C is connected (by Teichmiiller’s
theory). Therefore,

Any geometric fiber of M, is irreducible.

This fact is essentially used in 6.3 to study automorphic forms on the moduli of curves.

5.3. Intersection theory on the moduli space

A cycle class in an algebraic variety X is defined to be a rational equivalence class of
Z-linear finite sums of subvarieties of X, and the Chow ring CH*(X) denotes the group of
cycle classes in X whose ring structure is given by intersection products. The structure of
CH* (M) is an important subject in algebraic geometry and mathematical physics, and was
studied by Mumford, Witten, Kontsevich, Faber, Mirzakhani and others. A basic tool to
this study is Grothendieck-Riemann-Roch’s theorem for families of algebraic curves.

Grothendieck-Riemann-Roch’s theorem (GRR). This theorem states the following: If
m: X — B is a proper smooth morphism over a smooth base, and FE is a coherent sheaf on
X, then

ch (WI(E)) = T (Ch(E) - td (TC/B))
in the Chow ring CH*(B) ®z Q with Q-coefficients, where ch denotes the exponential Chern

character, and To/p = Q?;El) denotes the tangent bundle on C over B. In order to apply

this theorem to a proper smooth curve 7 : C' — B of genus g > 1, and E = Q’é/B (n>1),
put v = c1(Q¢/p)- Then

2 2

ch (. (Qg/B>>=w*<<1+fy+%+m>n'(1—%+z—2+--->>,
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and hence

o (m (9%5)) = @0 =Dl — 1) e (m () ) = L= (o).

The first equality means the original Riemann-Roch’s theorem given in 2.2. Furthermore, by
putting n = 1 in the second equality

12¢; <7T* (Q’é/3>> = (6n? —6n +1) - m, (72) =12(6n> —6n+1) ¢ (7« (QcyB)) -

Since the Picard group of M, is torsion-free,

c1 (7‘('* (Qg/B)) = (6n2 —6n+1)-¢ (77* (QC/B)) ,

and hence we have Mumford’s isomorphism [Mu4]:

det (w* (QZ'/B>> ~ det (71* (QC/B))®(6n2—6n+1)

between line bundles over B, where det(E) denotes the determinant line bundle associated
with a vector bundle E.

Remark. Morita [Mo] and Mumford [Mub] conjectured that the stable cohomology groups
defined for the moduli spaces of curves over C :
k def k k
H'(M) = H"(My(C),Q)=H"(Il;,Q) (9=3k—1)
independent of g > 3k — 1 by Harer’s result [H2]

satisfies that

EBH’“(M) = Q[k1,K2,...]: freely generated over Q
k>0

by the tautological classes x; = . ((01 (QC/MQ))Hl).

The free generatedness is proved by Miller [Mi] and Morita [Mo], and the whole conjecture
is proved by Madsen and Weiss [MadW].
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86. Arithmetic theory of modular forms

6.1. Elliptic modular forms

The Eisenstein series of even degree 2k > 4 (appeared in the Laurent coefficients of the
p-function pz4z,(2)):

n

Eo(r) & > 1 Exs 2 (2K) + 2(2m /D) &

k-1 2o d

n=1

the Fourier expansion (q = 62W\/TIT)

is a holomorphic function of 7 € H; which satisfies the following 2 conditions for SLy(Z):

e Automorphic condition of weight 2k :

ar +b\ ok a b '
Esy, <c7'—|—d> = (e1 + d)“" By, (1) for any < . d ) € SLy(Z);

e Cusp condition :
By, (7) is holomorphic at ¢ = 0 (< 7 = the unique cusp v/—1 - 0o of SLy(Z)) .

(Elliptic) modular forms are holomorphic functions on H; satisfying the automorphic
and cusp conditions for a congruence subgroup of SLy(Z).

Fourier expansion and number theory. The theory of elliptic modular forms and their
Fourier expansions has the following applications to number theory:

n—1 3
1. o7(n) = o3(n) + 120 Z os(i)os(n —1i) <<: Eg(t) = ?E4(7-)2 in Exercise 1) .
i=1

2. Jacobi’s theorem : ﬁ{(az 1<i<4 € zZ*

Zj: }:8Zd

d|n,44d

4
<<: the theta series <ZnEZ q"2> is expressed by Eisenstein series for I‘(2)> .

3. Deligne-Serre’s theorem [D, DS]: For a normalized Hecke eigenform f = )" a(n)q" of
weight k& and character € for I'g(IV), there is a 2-dimensional Galois representation p;
such that tr(ps(F5)) = a(p) and det(ps(F5)) = e(p)p*~! for any Frobenius automor-
phism F}; for unramified primes p.

4. Serre’s example [Se]: Let L be the decomposition field of #3 — 2 — 1 which is a Galois
extension over Q and contains K = Q(1/—23) such that the Galois group Gal(L/Q) is
isomorphic to the symmetric group S of degree 3. Put

1 oo
f(T) — 5 Z qm2+mn+6n2 . Z q2m2+mn+3n2 — Za(n)qn

m,neZ m,neZ n=1
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Then f(7) is a normalized Hecke eigenform of weight 1, and hence by Deligne-Serre’s

theorem, for any prime p # 23, tr(p¢(Fp)) = a(p), det(ps(Fp)) = <_723> = (%) and

#(p(Fp)) is equal to the residue index fr ,q(p) of p in L/Q. Therefore, this gives an
example of nonabelian class field theory.

Exercise 10. Show the above 1.

Exercise 11. Let the notation be as in the above 4. Serre’s example. Then prove that for
p # 23, one of the following cases necessarily happens:

ap) =2 () =1 < fa®) =1
ap) =0, (55) = -1 < frxal®) =2 fialp) =2
alp) =1, (35) =1 < fra®) =1 frqle) =3

and describe the decomposition of primes 2,3,5,59 in K and L respectively.

Rationality of modular forms. For 7 € Hy,

E. = C/(Z+ Zr) define a family of elliptic curves over Hy,

2r lof the natural coordinate of C

= dz, : a canonical base of H(E,,Qg_),

and

< Z Z) € SLy(Z)

= Baw 5 C/(Z(er +d) + Z(ar + b)) = C/(Z + Zr) = E,

cT+d

= dzarsp = dz,.

cT+d cT + d

If f(7) is a modular form of weight k for SLy(Z), then

®k k
1(550) ()™ = om0 (g ) 00 = oo™,
and hence f(7)dz; (7 € Hy) is SLa(Z)-invariant, i.e., defines a holomorphic section of the
line bundle on [H;/SLy(Z)] whose fiber over 7 € Hy is given by H(E,, Qg )®F.

Let My be the moduli stack of elliptic curves, 7 : £ — My be the universal elliptic curve,
and 7, (2 /0, ) denote a line bundle on M; defined by the direct image of the sheaf Q¢ /x4,
of relative 1-forms on £/ Mj, i.e.,

T (Qe/a0,)(S) & HO(E, Qp)),
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for elliptic curves E over schemes S. Then an integral modular form f of weight £ is
defined as an element of

H (Mo, (Qe/M1)*)

i.e., a global section of m.(Qg, M1)®k on M which is, by the above dictionary on the moduli
stack, a system of

{sections fs of HY (E, QE/S)®k ‘ E : elliptic curves over S}
which are functorial for schemes S. Hence

E/S : the Tate curve y? + xy = 23 + a4(q)z + ag(q) over Z((q))
du _ dX(u,q) _dx

= = : a base of 1-forms on the Tate curve
u o X(u,q) +2Y(u,q)  T+2y

dx Rk
= f is represented as F'(f) (x n 2y> ,

where F(f) € Z((q)) is called the evaluation of f on the Tate curve under the trivialization
of m, (Qe/pm,) on Z((g)). By Theorem 4.1 (2),

g=e"V1" = C/(Z+12Zr)=C"/(q)

d d
A W M — 2/ —1dz,
T+ 2y 07+ 7. (%7)

= f(r) = @evVTDFE(f)(dzr).

Therefore, ignoring the factor (27y/—1)%,

the evaluation on the Tate curve = the classical Fourier expansion,
and hence

a modular form is integral <= its Fourier coefficients are integral.

Exercise 12.

. Ey(1) Es(7) def 1 By(7) 3_ Eo(r) i are integra
Prove that ROBERD) and A(1) = 1728 <<2<(4)> <2C(6)> > tegral

(elliptic) modular forms for SLy(Z).

e Using that A(7) # 0 (7 € H) and that modular forms for SLy(Z) of weight 0 are
constant, prove that all integral modular forms for SLo(Z) are generated over Z by
these 3 modular forms.

6.2. Siegel modular forms (SMFs)

Moduli of abelian varieties. Let g be a positive integer > 1. Then in a similar way to
constructing moduli of curves given in 5.1, it is shown in [FKM] that there exists the fine
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moduli space A, as an algebraic stack over Z classifying principally polarized abelian varieties
of dimension g. By the correspondence:

21
Z = : € H, : the Siegel upper half space of degree g
Zg

e (1<i<g),
- <Cg/(Z9+Z9-Z);L(ei):{ Zig §9+1§§])§ 29) >’

H, becomes the fine moduli space of principally polarized abelian varieties X of dimension
g over C with symplectic isomorphism Z29 = H;(X,Z). Hence the orbifold A,(C) is given
by the quotient stack of H, by the integral symplectic group Spag(Z) of degree g :

Ag(C) = [Hy/Sp2y(Z)].
Definition of SMFs. Let A be the Hodge line bundle on .4, which is defined by

g
A /\ ps (Qx / Ag) (p: X - Ay denotes the universal abelian scheme)

9
= M) = /\HO (X,Qx/s) for abelian schemes X/S of relative dimension g.

Then for h € Z and a Z-module M, we call elements of

def

Syn(M) % FO (AQ,A®h oz M)

Siegel modular forms of degree g and weight h with coefficients in M.
For the natural coordinate 21, ..., 2, on the complex abelian varieties

X;=C9)(Z0+ 7 - 7),

dz1,...,dz4 give a base of H(Xz, x, ), and hence as in the elliptic case,

o= @2/ - (dz A Adzg)®" € S, (C) = HO ([Hg /Spag(Z)] ,>\®h>
f = f(Z) is a holomorphic function of Z € H, such that

)
f(G(Z)) = det(CZ + D)"- f(Z) for any G = < é ZB; ) € Spay(Z)

=

which is known as the usual definition of analytic Siegel modular forms. In particular,
f(Z) is invariant under the transformation

Z— 7+ B

by integral symmetric matrices B of degree g, and hence it can be expanded as a power series
of exp (2mv/=1z;;) (Z = (zij)i,; € Hy) which is called the (classical) Fourier expansion
of f.
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Exercise 13. Prove the above (:*>) .

It is shown by Satake that A,,c = Ay ®z C has the Satake compactification:

g
Ar e =T Ave

=0

obtained as the Zariski closure of a projective embedding using Siegel modular forms of
sufficiently large weight. Then the codimension of A; /c~ Ayc in .A; e is

glg+1) (g—1)g
- —g>1
5 5 g>1,

and hence ignoring (2mv/—1)9" (dzy A --- A dzg)®h,

© is an analytic Siegel modular form

= ( is an analytic section on .A; e (by Hartogs’ theorem)

= ( is an algebraic section on A; /C (by GAGA’s principle of Serre)
= ¢ is an algebraic section on Ay /¢

= peS,nC).

Therefore, the above (:*>) is in fact an equivalence é), and Sy 5 (C) is finite dimensional over

C by the compactness of A 4/C"

Fourier expansion of SMFs. By Mumford’s theory [Mu3] on degenerating abelian vari-
eties, there exists a semiabelian scheme expressed as

GY./ ((gijh<i<g | 1 <7 <g)

over the ring
Z |5 (i #9)] llan, - gl

where ¢;; (1 <i,j < g) are variables with symmetry ¢;; = ¢;;. This semiabelian scheme gives
a family of complex abelian varieties

CZ+Z-2) = (CX)g/<(eXp(27T\/__1ZiJ))1§igg 1< §g>

when ¢;; = exp(2mv/—1z;;) for Z = (zij)i; € Hy. Then the natural coordinates ui,...,uq
on Gi, give a base duj /u1, ...,dug/ug of 1-forms on this semiabelian scheme, and hence the
evaluation of any ¢ € S, (M) gives

p = F(p)- ((dur/w) A--- A (dug/ug)™"
= @2V F(p) - (dz1 A--- Ndzy)®" (if M = C and u; = exp(2my/—1z;)).

Therefore, we have a linear map:

F:Syn(M) — 7Z [qiijl (i # j)] q11s - qgg]] ®z M,
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which we call the arithmetic Fourier expansion.

Theorem 6.1. (Chai and Faltings [FaC])

(1) (Arithmetic Fourier expansion) F is functorial for M, and if M = C, then F(y) is
the classical Fourier expansion by q;; = exp (271\/—_12ij) for (zij)i; € Hy. Furthermore, F' is
injective, and for a submodule N of M and ¢ € Sg (M),

? € Synl(N) = Flp) € Z |¢5'] llga)l @z M.

(2) (Finiteness) Sq 1(Z) is a free Z-module of finite rank such that Sy (Z)®zC = Sg1(C)
and that Sg0(Z) = Z, Sy n(Z) = {0} if n < 0. Furthermore, the ring of integral Siegel modular
forms of degree g over Z :

SH(Z) € P Syn(2)

h>0
is a normal ring finitely generated over Z.

Sketch of Proof. (1) The functoriality for M and the compatibility with the classical
Fourier expansion is clear from the above. Since A, is smooth over Z, we have the following
left exactness of Sy 5 (M) for M :

0—>N—-M—(M/N)—0
= 022\ @z N = 2" @z M — X" @z (M/N) =0
= 0— Sg,h(N) — Sg7h(M) — Sg’h(M/N).

We prove the injectivity of F. Since any Z-module M is the direct limit of finitely generated
Z-modules, and cohomology and tensor product commute with direct limit, we may assume
that M is a finitely generated Z-module, hence by the left exactness for M, we may put
M =Z or =Z/pZ (p : a prime number). Therefore, the injectivity follows from that A, ® M
is smooth over the ring M with geometrically irreducible fibers which is proved in [FaC].
Hence the remains of (1) follows from this injectivity and the left exactness of Sy 4.

(2) is derived by the following result in [FaC]: there exists an algebraic stack A, which
is proper smooth over Z and contains 4, as its open dense substack, and any integral Siegel

modular form of weight k can be extended to a section on A, of an extension N of A&k
(called Koecher’s principle).
The finiteness of rankzSy ;(Z) follows from these results immediately. Further, there

is m € N such that X" defines a projective morphism .,Ttg — P, which can be, by the
theory of Stein factorization, decomposed as A, — A7 — Py such that A; — A7 has
connected geometric fibers and A7 — Py is finite. Therefore, replacing m by a multiple
X2 defines a immersion of Ay, and hence @y H 0 (Zg,ka
finitely generated over Z. QED.

) and S (Z) are normal rings

Ring of SMFs of degree 2 and 3. (Igusa [Igl,3], Tsuyumine [Tyl]) For ¢ > 1 and h >
g + 1, the Eisenstein series of degree g > 1 and weight h is a function of Z € H, defined
by

Egan(2)€ Y det(Cz+D)"; G= ( g g >
GGFOO\S;DQQ(Z)
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where

r, {( g tU{B_l > € Spgg(Z)}.

Then £ ;, becomes a Siegel modular form with Fourier coefficients in Q, and hence an element
of Sg1(Q). Igusa [Igl] proved that

S5(C) = C|E4, Eg, A1, A1) @D Ass - C[Ey, Ee, Avo, Ava],

where Ej, = Esp,, Ajg = EyEg — E1g, A2 = 441E3 + 250E2 — 691E5 and Ass € Sp35(C) is
given by Ibukiyama as

4F, 6E6 10A10 12A12

OF, O0Fg 0A1g 0A1
8Z11 6211 8Z11 8Z11

A 211 212 —
35 Z12 2922 6E4 8E6 OA 10 8A12
Oz12 Oz12  0Oz12 0212

oFE, 0FEg 0A1 g 0A19
Oz Ozza Oz Oz

In [I5], this result was extended to S5(R), where R is a Z-algebra in which 6 is invertible.

Igusa [Ig3] determined generators of S5(Z), and Tsuyumine [Ty1] gave explicit generators
of S5(C).

6.3. Teichmiiller modular forms (TMFs)

Analytic : automorphic functions on the Teichmiiller space
= automorphic forms on the moduli space of Riemann surfaces,
Algebraic : global sections of line bundles on the moduli of curves.

This naming is an analogy of

Siegel modular forms (SMF's)

automorphic functions on the Siegel upper half space
global sections of line bundles

on the moduli of principally polarized abelian varieties.

Definition of TMFs. Let m : C — M, be the universal curve over the moduli stack of

proper smooth curves of genus g > 1, and let A def N s (Qc/ Mg) be the Hodge line
bundle. Then for a Z-module M, we call elements of

def

Tyn(M) = HO (Mg, A" @7 M)

Teichmiiller modular forms of degree g and weight h with coefficients in M. By the
pullback of the Torelli map 7 : My, — A, sending curves to their Jacobian varieties with
canonical polarization, we have a linear map

75 Sgn(M) — Ty (M)
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for Z-modules M. If g = 2,3, then the image of the Torelli map is Zariski dense, and hence
T* is injective.

If n > 3, then

Mgy n/c 4 the moduli space of proper smooth curves over C

of genus g with symplectic level n structure,

Agn/c Cf the moduli space of principally polarized abelian varieties over C

of dimension g with symplectic level n structure

are given as fine moduli schemes over C. Let M; n/C be the Satake-type compactification,
i.e., normalization of the Zariski closure of

(L o T)(Mg,n/C) C A;,n/c’

where 7 : M ,,,c = Ay, c denote the Torelli map, and ¢ : Ay, /c — ‘A;,n/C denote the
natural inclusion to the Satake compactification. Then each point of M;n /c— Mg /¢ cor-
responds to the product Jq X - - - X J,,, of Jacobian varieties over C with canonical polarization
and symplectic level n structure such that Y~ dim(J;) < g and that (m, g) # (1,dim(J;)).
Therefore, if g > 3, then M;,n/c — My c has codimension 2 in M;n/c, and hence by
applying Hartogs’ theorem to M, /,c C ./\/l;n/c and GAGA’s principle to M;n/c, one can
see that analytic TMFs become algebraic TMFs, i.e.,

holomorphic functions on the Teichmiiller space T},

T,1(C) = ¢ with automorphic condition of weight h )
for the action of the Teichmiiller modular group 11,

and this space is finite dimensional over C.
Exercise 14. Give a precise definition of analytic Teichmiiller modular forms.

Expansion of TMFs. Let C'a be the generalized Tate curve given in Theorem 4.2 which
is smooth over the ring Ba. Then as in the elliptic and Siegel modular case, the evaluation
on Ca (= the expansion by the corresponding local coordinates on M,) gives rise to a
homomorphism

KA Tg7h(M) — BA ®7z M.

Theorem 6.2. ([13]). Fiz g > 1 and h € Z.
(1) ka is injective, and for a Teichmiiller modular form f € T, (M) and a submodule N
of M,

feTyn(N) < ra(f) € Ba®z N.
(2) For a Siegel modular form ¢ € Sy (M),
K:A(T*(QO)) = F((p)’%‘jzpiﬁ
where p;; are the multiplicative periods of Ca given in Theorem 4.2 (4).

Proof. (1) follows from the fact that Ca corresponds to the generic point on M,, and the
argument in the proof of Theorem 6.1 (1) replacing A, by M, which is proper and smooth
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over Z with geometrically irreducible fibers (see 5.2). (2) follows from Theorem 4.2 (4). QED.

Schottky problem. As an application of Theorem 6.2, we can give a solution to the Schottky
problem, i.e. characterizing Siegel modular forms vanishing on the Jacobian locus, is given
as follows:

7'*(4,0) =0 — F((p)|q7,'j:pij =0.

pij are computable, hence kA are computable

Using the universal periods p;; given in Example 4.1, the above implies the following result
of Brinkmann and Gerritzen [BG, G]: For the Fourier expansion

F(QD): Z ar H qij2tij H Qiit”

T=(ti;) 1<i<j<g 1<i<g
of a Siegel modular form ¢ vanishing on the Jacobian locus,
g
integers sq, ..., sq > 0 satisfy Z s; = min{T(T) | ar # 0}
i=1

e A AN\ 2t
Z ar H (Ei: — ij_)j():p(_l xﬂ)) =0 in Ap (: given in Example 4.1).

T—; — T;)

=
tii=s; 1<J

Schottky’s J. For n = 0 mod(4), put

def
Lgn = {(:L'l, ...,l’Qn) S R2n

1
2x;, T; — Tj, §Zl’i€Z}
7

a lattice in R?" with standard inner product,

4
def
pn(Z2) = S exp [ 7V DY Az | (Z = ()i € Ha)
(A1, Aa)ELS, i,j=1
a Siegel modular form of degree 4 and weight n,

def 22
J(Z) = W(tp4(2)2 — ¢s(Z)) : Schottky’s J

an integral Siegel modular form of degree 4 and weight 8.

Then Schottky and Igusa proved that the Zariski closure of the Jacobian locus in Ay ®z C
is defined by J = 0.

Brinkmann and Gerritzen [BG, G] checked the above Brinkmann and Gerritzen’s criterion
for Schottky’s J, i.e., computed the lowest term of J and showed that this is given by up to

a constant

F 411922433944

M
H1§i<j§4 dij
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where F' is a generator of the ideal of Cg;; (1 < i < j <4)] which is the kernel of the ring
homomorphism given by

g (@i —x5)(x—i —x—j)

(i — x—j) (- — x;)

Problem. Let J' be a primitive modular form obtained from J by dividing the GCM (greatest
common divisor) of its Fourier coefficients. Then for each prime p,

the closed subset of A4 ®z F,, defined by J’ mod(p) =0
‘?
= the Zariski closure of 7(My ®z F,) in Ay ®z F,),.

Hyperelliptic Schottky problem. ([I4]) Let p;; be the universal periods given in Example
4.1. Then

def

become the multiplicative periods of the hyperelliptic curve Ci,, over

1 1 .,
z |5 (i #5)] o]
uniformized by the Schottky group:

QZEZ' ’ ZT; +x 5
x x 1 0 x ar )\
k. —Tk E —Tk _
<< (- )(0 yk>< L > k_l,...,g>.
Since Chyp is generic in the moduli space of hyperelliptic curves, for any Siegel modular form
o over a field of characteristic # 2,

¢ vanishes on the locus of hyperelliptic Jacobians <= F (gp)]qij:p;j =0.
Problem. Give an explicit lower bound of n(g) € N satisfying that
 vanishes on the locus of hyperelliptic Jacobians < F (90)|qij —p, € 19,

where I is the ideal generated by y1, ..., yg.

Theta constants and ring structure.

For g > 2, let

04(2) def H Z exp <27r\/—1 B(n—ka)Zt(n—Fa) + (n—i—a)tb])
a,be {0,1/2}¢ mMeZs
4a’b : even

be the product of even theta constants of degree g. If g > 3, then 6, is an integral Siegel
modular form of degree g and weight 2972(29 + 1).

Theorem 6.3. (12, 3]). Forg >3,
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(1) Tyn(Z) is a free Z-module of finite rank satisfying that Ty (Z) ®z C =T, ,(C), and
that Tyo(Z) = Z, T,n(Z) = {0} if h < 0. Furthermore, the ring of integral Teichmiiller
modular forms of degree g :

* def
TH(Z) = P Tyn(Z)
h>0
becomes a mormal ring which is finitely generated over Z.
(2) For the product 6, of even theta constants of degree g,

def [ —2% (9=3),
No = 2 (5>,

Then \/7*(0,4) /Ny is a primitive element of Ty 29-3(2041)(Z), i.e., not congruent to 0 modulo
any prime.

(3) T3 (Z) is generated by Siegel modular forms over Z and by /7*(03)/Ns which is of
weight 9, hence is not a Siegel modular form.

Proof. (1) follows from the argument in the proof of Theorem 6.1 (2) replacing

g
(A97 Z{p A) by <M97 Mg’ /\W*(WC/WQ)) )

where 7 : C — Mg denotes the universal stable curve over Deligne-Mumford’s compactifica-
tion. ka is used to show that any integral Teichmiiller modular form can be extended to a
global section on Mg.

(2) Let D be the divisor of M, ®z Q consisting of curves C' which have a line bundle
L such that L®? = Q¢ and that dim H°(C, L) is positive and even. Then as is shown
in [Ty2], 2D gives the divisor of 7%(6,), and hence a Teichmiiller modular form of weight
(the weight of 6,)/2 with divisor D, which exists and is uniquely determined up to constant,
is a root of 7*(f,) up to constant (see below). Since D is defined over Q, a root of 7*(6,)
times a certain number is defined and primitive over Z. To determine this number, KA is
used as follows: Let Ag, Aa,p;; be as in Example 4.1. Then

Gg(Z) _ 22971(29—1) H (_1)Zi b; P-Oé2,
(blv"'vbg) € {071/2}9
Zi b, €Z
where
a : a primitive element of Z [q%l (1 # j)} [lq11, -5 qgql] »
1 _
— L \H{kES|be#£0} 1/2
Po= 11 5 2. (1) T H %
(b1,...,bg) € {0,1/2}9 Sc{1,...,g} i€S,5¢S
Zi b, €Z
= (the constant term of P|y, —p, € AA)L“_QE e =1
=T g, g =T
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Hence we have (see Exercise 15 below):

\/the constant term of Plg, —,,. € Ag

V—1-227. Ap (9=3),
= m € { 92971 (20-1)=1 . 4 (g >4).

(3) Recall the result of Igusa [Ig2] that the ideal of S3(C) vanishing on the hyperelliptic
locus is generated by 63. Since the Torelli map M3 — Ajs is dominant and of degree 2, if we
denote ¢ by the multiplication by —1 on abelian varieties, then

D BuC) = {feTE(C) | uf) = f}=S5(C),

h: even

P 1u(C) = {(FETIC) | o(f) = —F}.

h: odd

Let f have odd weight. Then by ¢(f) = —f, f = 0 on the hyperelliptic locus, and hence
by Igusa’s result, f2/63 becomes a Siegel modular form. Therefore, T3 (C) is generated by

S5(C) and +/7(#3) which implies (3) because \/7(63)/N3 is integral and primitive. QED.

Exercise 15. Prove that

(blv "'7b9) € {07 1/2}9
Zi b €Z

TMFs of degree 2. Let k be an algebraically closed field k£ of characteristic # 2. Then any
proper smooth curve C of genus 2 over k is hyperelliptic, more precisely a base of H°(C,Q¢)
gives rise to a morphism C — IE"/%C of degree 2 ramified at 6 points, and hence

M2®Zk7 = {(5171751:27:1:36[?]%;_{071700} ‘ xl#‘,n] (Z?éj)}/sﬁy
where each element o of the symmetric group Sg degree 6 acts on (x1,x2,z3)’s such as
(o(r1),0(x2),0(x3),0,1,00)

is obtained from o(z1,x2,x3,0,1,00) by some Mdbius transformation of GLy(k). Therefore,
My @z k becomes an affine variety, and T (k) = H 0(Ma, \®" @7 k) is infinite dimensional.
In fact, it is proved in [I3] that the ring

T5(2) < D Ton(Z)

heZ

of integral Teichmiiller modular forms is generated by 7*(S%(Z)) and by 212/ (7*(2))? which
is of weight —10.
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Construction of TMFs. Assume that g > 3. Then by results of Mumford [Mul] and Harer
[H1], the Picard group of M,

Pic(My) Cf the group of linear equivalence classes of line bundles on M.

is isomorphic to H2(M,(C),Z) = H?(Il;,Z) (11, denotes the Teichmiiller modular group of
degree g), and this is free of rank 1 generated by the Hodge line bundle A. Therefore,

D # 0 is an effective divisor on M, over a subfield K of C

there are h € N such that Oy, (D) = A®"

there is f € T, 5, (K) such that (f) = D

(for the application, see the proof of Theorem 6.3 (2)),

4l

and f is uniquely determined (up to a nonzero constant) by the existence of the Satake-type
compactification of M. From this method, one can construct Teichmiiller modular forms
and study their rationality using k.

Mumford’s isomorphism. We recall Mumford’s isomorphism (for g > 1) given in 5.3:

det <7T* (Qg//\/tg)> >~ det, (77* (QC/MQ))®(6n2_6n+1) _ A@(ﬁnz_ﬁn_ﬂ)'

Therefore, by putting n = 2,
39—3

A\ 7 (925 ) = A

In order to express this isomorphism explicitly, we consider the morphism

pg : Sym? (s (QC/MQ)) > (s,8) = s-5 €, (Qc/zMg)
between vector bundles on M.

e If g =1, then p; is an isomorphism and gives

N2 LY (087, ) ZAEH = Oa 310 2A(F H (1- "™ € T115(2).

o If g =2, then po is an isomorphism and gives

3
A B A (9530,) ZAT 5 O, 310 £ (77(8:)/2°)° € To0(2).

e If g = 3, then p3 is an isomorphism generically and vanishes on the hyperelliptic locus,
hence this gives

6
det
A N (957,) =N = Oy 5 1 /7 )N € Tio(2)

Furthermore, [I6] showed the explicit formula of the Mumford isomorphism for any g as an
infinite product extending A(7).
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