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Abstract

We shall review the following subjects:

• Basic theory on algebraic curves and their moduli space;

• Schottky uniformization theory of Riemann surfaces, and its application to arith-

metic geometry on the moduli space of algebraic curves.
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§1. Introduction

1.1. Brief history

• Around 1800～1830, Gauss(1777–1855), Abel(1802–1829) and Jacobi(1804–1851)

showed that the inverse function of the elliptic integral:

y =

∫
dx
/√

f(x) (f(x) : a polynomial of degree 4 without multiple root)

is an elliptic function, i.e., a double periodic function of the complex variable y, and

they expressed the function as an infinite product and the ratios of theta functions.

⇒ complex function theory.

• Riemann(1826–1866) constructed Riemann surfaces from algebraic function fields

C(x, y) (x : a variable, y : finite over C(x)),

and solved Jacobi’s inverse problem using Abel-Jacobi’s theorem and Riemann’s

theta functions.

⇒ complex geometry and algebraic geometry (1857).

• Teichmüller(1913–1943) constructed analytic theory on the moduli of Riemann sur-

faces.

• Mumford constructed the moduli of algebraic curves as an algebraic variety (1956),

and studied this geometry. Further, he and Deligne gave its compactification as the

moduli of stable curves (1969).

• String theory provided a strong relationship between physics and the theory of

moduli of curves.

• Around 1960～1970, Shimura constructed arithmetic theory on Shimura models

with applications to the rationality on Siegel modular forms, and further Chai and

Faltings extended his result to any base ring (1990).

• Grothendieck posed a program to realize geometrically the absolute Galois group

as the automorphism group of the profinite fundamental group of the moduli of

curves (1984).
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1.2. Plan of this lecture

We will review the following subjects with some proof:

• Very classical results on algebraic curves over C and the associated Riemann sur-

faces: for example, ℘-functions and elliptic curves, differential 1-forms and period

integrals, Riemann-Roch’s theorem, Abel-Jacobi’s theorem and Jacobian varieties,

degeneration, Schottky uniformization and the description of forms and periods.

• Rather classical results on moduli and families of algebraic curves: for example,

moduli of elliptic curves and higher genus curves, stable curves and their moduli

(Deligne-Mumford’s compactification), the irreducibility of the moduli, Eisenstein

series and Tate curve, Mumford curves;

and recent results on arithmetic version of Schottky uniformization.

• Recent results on arithmetic geometry of the moduli space of algebraic curves: for

example, Fourier expansion of (elliptic and Siegel) modular forms and their rational-

ity, Teichmüller modular forms and the Schottky problem, Mumford’s isomorphism,

Teichmüller groupoids and their arithmetic geometry, Galois and monodromy rep-

resentations, Grothendieck-Teichmüller group, mixed Tate motives.

We would like to explain that the classical, but not so familiar Schottky uniformiza-

tion theory gives an explicit description of forms, periods and degeneration of Riemann

surfaces, and that this theory can be extended in the category of arithmetic geometry

(unifying complex geometry and formal geometry over Z) with useful applications to

studying the following objects:

• automorphic forms called Teichmüller modular forms;

• fundamental groupoids called Teichmüller groupoids;

on the moduli space of algebraic curves.
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§2. Algebraic curves and Schottky uniformization

2.1. Algebraic curves and Riemann surfaces

Algebraic curves. Algebraic varieties are topological spaces obtained by gluing zero

sets of polynomials of multiple variables, and closed subsets of algebraic varieties are

defined as zero sets of polynomials (Zariski topology). These examples are

the projective n-space IPn
k

def
= (kn+1 − {(0, ..., 0)})/k×

= {(x0 : · · · : xn+1) = (cx0 : · · · : cxn+1) | c ̸= 0},

and its subsets (called projective varieties which are proper over k (
.
= compact)) as

the zero sets of homogeneous polynomials over an algebraically closed field k.

(algebraic) curves
def
= 1-dimensional algebraic varieties

Riemann’s correspondence. There exists an equivalence (trinity) of the categories:

(the category of)

proper smooth

curves over C

take C-rational points ↙ ↘ take function fields

Riemann surfaces
def
= compact 1-dimensional

complex manifolds

make Riemann surfaces←−
finite extensions

of the rational

function field C(x)

Genus. The genus of a Riemann surface and the corresponding curve is defined as the

number of its holes (Figure).

Genus 0 case.

the projective line IP1
C

↙ ↘
the Riemann sphere

IP1(C) = C ∪ {∞}
←− C(x)

Genus 1 case. For cubic polynomials f(x) ∈ C[x] without multiple root,

Cf =
{
(x0 : x1 : x2) ∈ IP2

C

∣∣ x0x22 = x30f(x1/x0)
}

↙ ↘
complex tori

C/L

Figure←− C(x, y);

y2 = f(x)
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Here

L is a lattice in C, i.e., a sub Z-module of rank 2 such that L⊗Z R = C,

E2k(L)
def
=

∑
u∈L−{0}

1

u2k
: absolutely convergent series for k > 1,

f(x)
def
= 4x3 − 60E4(L)x− 140E6(L),

℘(z) = ℘L(z)
def
=

1

z2
+

∑
u∈L−{0}

(
1

(z − u)2
− 1

u2

)
: Weierstrass’ ℘-function

⇒

{
℘(z) is absolutely and uniformly convergent on any compact subset of C− L,
z 7→ (1 : ℘(z) : ℘′(z)) gives a biholomorphic map C/L

∼→ Cf (C),

and

C(x, y) is a quadratic extension of C(x) defined by y2 = f(x)

↔ Cf is a double cover of IP1
C ramified at the 3 roots of f(x) and ∞.

An elliptic curve is a proper smooth curve C of genus 1 and with one marked point x0.

Then C has unique commutative group structure defined algebraically with origin x0. For

example, the above Cf with (0 : 0 : 1) is an elliptic curve, and the map C/L
∼→ Cf (C) is

also a group isomorphism which follows from the addition law of ℘(z) :

℘(z + w) = −℘(z)− ℘(w) + 1

4

(
℘′(z)− ℘′(w)
℘(z)− ℘(w)

)2

.

Exercise 2.1. Show the following Laurent expansion of ℘(z) :

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)E2n+2(L)z
2n around z = 0.

Further, using this fact, the periodicity of ℘(z) :

℘(z + u) = ℘(z) (u ∈ L),

and the maximum principle on harmonic functions, prove that

℘′(z)2 = 4℘(z)3 − 60E4(L)℘(z)− 140E6(L)(
i.e., ℘(z) = x ⇒ z =

∫
dx√

4x3 − 60E4x− 140E6

)
and that E8(L) =

9

7
E4(L)

2.

Genus > 1 case. For a Riemann surface R of genus> 1, by Riemann’s mapping theorem,

its universal cover is biholomorphic to

H1
def
= {τ ∈ C | Im(τ) > 0} : the Poincaré upper half plane.
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Then we have

R ∼= H1/π1(R) : called a Fuchsian model,

where the fundamental group π1(R) of R is a cocompact discrete subgroup of

PSL2(R)
def
=

{(
a b

c d

)
∈M2(R)

∣∣∣∣∣ ad− bc = 1

}/
{±E2}

which acts on H1 by the Möbius transformation:

τ 7→ aτ + b

cτ + d

(in fact, PSL2(R) is the group Aut(H1) of complex analytic automorphisms of H1).

Remark. Let Γ be a congruence subgroup of SL2(Z), for example

SL2(Z)
def
=

{(
a b

c d

)
∈M2(Z)

∣∣∣∣∣ ad− bc = 1

}

⊃ Γ0(N)
def
=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 mod(N)

}

⊃ Γ(N)
def
=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ a− 1 ≡ b ≡ c ≡ d− 1 ≡ 0 mod(N)

}
: the principal congruence subgroup of SL2(Z) of level N.

Then H1/Γ is a noncompact 1-dimensional complex manifold, and becomes compact by

adding the set IP1(Q)/Γ of cusps of Γ. H1/Γ and
(
H1 ∪ IP1(Q)

)/
Γ are called modular

curves.

2.2. Forms, periods and Jacobians

Let R be a Riemann surface of genus g ≥ 1. Then its fundamental group π1(R;x0)

with base point x0 ∈ R is represented by

⟨
α1, β1, ..., αg, βg︸ ︷︷ ︸

generators

∣∣∣∣∣∣∣
g∏

i=1

(
αiβiα

−1
i β−1i

)
= 1︸ ︷︷ ︸

relation

⟩
,

where the generators αi, βi are canonical, i.e., closed oriented paths in R with base point

x0 such that αi, βi intersect as the x, y-axes and that (αi ∪ βi)∩ (αj ∪ βj) = {x0} if i ̸= j

(Figure). Then

Theorem 2.1. (Abel, Jacobi, Riemann, see [Mur])
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(1) The space H0 (R,ΩR) of holomorphic 1-forms on R is g-dimensional, and is

generated by ω1, ..., ωg satisfying that

∫
αi

ωj = δij .

(2) (Rimeann’s period relation) The period matrix

Z
def
=

(∫
βi

ωj

)
1≤i,j≤g

of (R; {αi, βi}1≤i≤g) is symmetric, and its imaginary part Im(Z) is positive definite.

(3) (Abel-Jacobi’s theorem) Let

Cl0(R) =

{∑
i

miPi

∣∣∣∣∣ mi ∈ Z, Pi ∈ R such that

deg (
∑

imiPi)
def
=
∑

imi = 0

}/{∑
P∈R

ordP (f) · P

}

the divisor class group with degree 0 of R, and let Cg/L be the g-dimensional complex

torus obtained from the lattice L
def
= Zg + Zg · Z in Cg. Then the map

∑
j

(Pj −Qj) 7→

∑
j

∫ Pj

Qj

ωi


1≤i≤g

gives rise to a group isomorphism:

µ : Cl0(R)
∼−→ Cg/L.

Remark. It is clear that (z1, ..., zg) 7→
(
exp(2π

√
−1z1), ..., exp(2π

√
−1zg)

)
gives the iso-

morphism

Cg/L
∼→ (C×)g

/⟨(
exp

(
2π
√
−1
∫
βi

ωj

))
1≤i≤g

∣∣∣∣∣ 1 ≤ j ≤ g

⟩
,

and then

exp

(
2π
√
−1
∫
βi

ωj

)
(1 ≤ i, j ≤ g)

are called the multiplicative periods. Let Pic0(R) denote the Picard group with

degree 0 of R which is defined as the group of linear equivalence classes of line bundles

with degree 0 over R. Then it is known that

Cl0(R) ∼= Pic0(R)

D ↔ OR(D); OR(D)(U)
def
=

{
f ∈ OR(U)

∣∣∣∣∣ ∑
P∈R

ordP (f) · P ≥ −D

}
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is an abelian variety, i.e., a proper (commutative) algebraic group over C, and the

isomorphism is also a biholomorphic map. This abelian variety is called the Jacobian

variety of R (or of the associated curve), and denoted by Jac(R).

Proof. (1) SinceH1(R,Z) = π1(R)/[π1(R), π1(R)] has rank 2g over Z, dimCH
1(R,C) =

2g, and hence by the Hodge decomposition:

H1(R,C)
∼
= H0(R,ΩR)⊕H0(R,ΩR) (∗ : the complex conjugation of ∗),

we have dimCH
1(R,ΩR) = g.

To prove the remains and (2), (3), first we show a generalized form of Riemann’s

period relation. Let P the 4g oriented sided polygon obtained from R by cutting the

paths αi, βi (1 ≤ i ≤ g) (Figure). Fix P0 ∈ P , and for a holomorphic 1-form ϕ on R,

define f(P ) =
∫ P
P0
ϕ. Then for a meromorphic 1-form ψ on R whose poles belong to the

interior P◦ of P (this condition is satisfied by moving slightly αi, βi if necessary), using

the function f± on the boundary ∂P of P defined by

f+(P )
def
=

∫ P

P0

ϕ (P ∈ αi ∪ βi),

f−(P )
def
=

∫ P

P0

ϕ (P ∈ −αi ∪ −βi),

we have

2π
√
−1

∑
P∈P

ResP (fψ) =

∫
∂P
fψ (by the residue theorem)

=

g∑
i=1

(∫
αi

f+ψ +

∫
−αi

f−ψ +

∫
βi

f+ψ +

∫
−βi

f−ψ

)

=

g∑
i=1

(∫
αi

(f+ − f−)ψ +

∫
βi

(f+ − f−)ψ
)

=

g∑
i=1

((
−
∫
βi

ϕ

)(∫
αi

ψ

)
+

(∫
αi

ϕ

)(∫
βi

ψ

))
.

Therefore,

2π
√
−1

∑
P∈P

ResP (fψ) =

g∑
i=1

((∫
αi

ϕ

)(∫
βi

ψ

)
−
(∫

βi

ϕ

)(∫
αi

ψ

))
which we call the generalized Riemann’s period relation.

In particular, for two holomorphic 1-forms φ,φ′, put f(P ) =
∫ P
P0
φ (P ∈ P◦), and put

Ai =

∫
αi

φ, A′i =

∫
αi

φ′, Bi =

∫
βi

φ, B′i =

∫
βi

φ′.
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Then by the above,
g∑

i=1

(
AiB

′
i −BiA

′
i

)
= 0.

Further,

Im

(
g∑

i=1

AiBi

)
=

1

2π
√
−1

g∑
i=1

(
AiBi −BiAi

)
=

1

2π
√
−1

∫
P
fφ =

1

2π
√
−1

∫
R
d
(
fφ
)

=

∫
R
dudv =

∫
R

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)
dxdy(

f = u+
√
−1v, z = x+

√
−1y : local coordinates

)
is positive if φ is not identically 0. Therefore, any holomorphic 1-form φ with

∫
αi
φ = 0

(1 ≤ i ≤ g) becomes identically 0, and hence for any base ω′i (1 ≤ i ≤ g) of H0(R,ΩR),(∫
αi
ω′j

)
i,j

is a regular matrix. This implies (1).

(2) If φ = ωi, φ
′ = ωj , then by the above,

∫
βi
ωj −

∫
βj
ωi = 0, hence Z is symmetric.

Further, if φ =
∑g

i=1 ciωi ∈ H0(R,ΩR) is not 0, then by the above, Im(cZtc) > 0

(c
def
= (c1, ..., cg)) which implies that Im(Z) is positive definite. This proves (2).

(3) If f is a meromorphic function on R, then by the generalized period relation,

∑
P∈R

(
ordP (f) ·

∫ P

P0

ωj

)

=
∑
P∈P

ResP

(∫ P

P0

ωj ·
df

f

)

=
1

2π
√
−1

g∑
i=1

((∫
αi

ωj

)(∫
βi

df

f

)
−
(∫

βi

ωj

)(∫
αi

df

f

))
∈ L

because
∫
αi
df/f,

∫
βi
df/f ∈ 2π

√
−1Z. Hence the map µ in (3) is well-defined. Next, we

show the injectivity of µ. By using Riemann-Roch’s theorem:

dimCH
0(R,OR(D))− dimCH

0(R,ΩR(−D))

= dimCH
0(R,OR(D))− dimCH

1(R,OR(D)) (by Serre’s duality)

= deg(D) + 1− g,

we have

dimCH
0(R,ΩR(P1 + P2)) = g + 1 = dimCH

0(R,ΩR) + 1 (P1, P2 ∈ R).
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Let D be a divisor of degree 0 on R such that µ(D) ∈ L. Then by the above, there is

a meromorphic 1-form ψ on R such that
∑

P∈R ResP (ψ) · P = D. Hence by the period

relation,

µ(D) =

(∑
P∈P

ResP

(∫ P

P0

ωj · ψ
))

1≤j≤g

=
1

2π
√
−1

g∑
i=1

((∫
αi

ωj

)(∫
βi

ψ

)
−
(∫

βi

ωj

)(∫
αi

ψ

))
1≤j≤g

∈ L =

{
g∑

i=1

(
mi

∫
αi

ωj − li
∫
βi

ωj

)
1≤j≤g

∣∣∣∣∣ mi, li ∈ Z

}
.

Therefore, there are integers mi, li (1 ≤ i ≤ g) such that

g∑
i=1

((∫
βi

ψ − (2π
√
−1)mi

)(∫
αi

ωj

)
−
(∫

αi

ψ − (2π
√
−1)li

)(∫
βi

ωj

))
= 0

for any 1 ≤ j ≤ g. By (1), the orthogonal subspace of C2g to(∫
α1

ωj , · · · ,
∫
αg

ωj ,

∫
β1

ωj , · · · ,
∫
βg

ωj

)
(1 ≤ j ≤ g)

has dimension g, and by the period relation, this is generated by(∫
β1

ωj , · · · ,
∫
βg

ωj ,−
∫
α1

ωj , · · · ,−
∫
αg

ωj

)
(1 ≤ j ≤ g).

Hence there are b1, ..., bg ∈ C such that∫
αi

ψ − (2π
√
−1)li =

g∑
j=1

bj

∫
αi

ωj ,

∫
βi

ψ − (2π
√
−1)mi =

g∑
j=1

bj

∫
βi

ωj ,

and then

f = exp

∫ P

P0

ψ − g∑
j=1

bjωj


is a meromorphic function on R such that

∑
P∈R ordP (f) ·P = D. This implies the injec-

tivity of µ. Finally, we show that the surjectivity of µ. Let φ1 be a nonzero holomorphic

1-form, and Q1 be a point on R at which φ1 does not vanish. Then by Riemann-Roch’s

theorem,

dimCH
0(R,ΩR(−Q1)) = dimCH

0(R,OR(Q1)) + g − 2 = g − 1,
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and hence there are nonzero φ2 ∈ H0(R,ΩR(−Q1)) and Q2 ∈ R at which φ2 does

not vanish. By repeating this process, one take a base φ1, ..., φg of H0(R,ΩR) and

Q1, ..., Qg ∈ R such that φi+1, ..., φg, but not φi vanish at Qi (1 ≤ i ≤ g). Therefore, for

P1, ..., Pg in neighborhoods of Q1, ..., Qg respectively, the jacobian of

(P1, ..., Pg) 7−→

(
g∑

i=1

∫ Pi

Qi

φ1, ...,

g∑
i=1

∫ Pi

Qi

φg

)
is nonzero at (Q1, ..., Qg), and hence by the implicit function theorem, the linear map µ

is locally biholomorphic. This implies that µ is surjective. QED.

Exercise 2.2. Fix P0 ∈ R. Then for each P ∈ R, prove that there is a unique meromor-

phic 1-form wP = wP (z) on R such that

• wP is holomorphic except z = P, P0;

• wP has simple poles at z = P, P0 with residues 1,−1 respectively;

•
∫
αi

wP = 0.

Further, using the generalized Riemann’s period relation, prove that

d

(∫
βi

wz

)
= 2π

√
−1ωi(z).

Example 2.1. If R = C/L : genus 1; L = Z+ Zτ (Im(τ) > 0), then

H0(R,ΩR) = Cdz, Z =

∫ τ

0
dz = τ.

Schottky unifomization gives explicit description of forms and periods

2.3. Degeneration of Riemann surfaces

Genus 1 case. If f(x)(: degree 3, without multiple root) becomes a(x − α)2(x − β)

(a ̸= 0, α ̸= β), then the complex torus Cf (C) degenerates to a singular space obtained

by identifying 2-points on the Riemann sphere (Figure).

For example, for f(x) = (x2 − ε2)(x+ 1),

y2 = f(x)⇔ (
√
x2 + x3 + y)(

√
x2 + x3 − y) = ε2(1 + x)

ε→0−→ (
√
x2 + x3 + y)(

√
x2 + x3 − y) = 0 around (x, y) = (0, 0),

where
√
x2 + x3 =

∑∞
k=0

(
1/2

k

)
xk+1.
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Local degeneration. For a complex number ε such that 0 < |ε| < 1, let D be the union

of the two annular domains:

U = {x ∈ C | |ε| < |x| < 1}, V = {y ∈ C | |ε| < |y| < 1}

by the relation xy = ε. Then under ε→ 0, D becomes the union of the 2 disks

{x ∈ C | |x| < 1}, {y ∈ C | |y| < 1}

identifying x = 0 and y = 0.

Ordinary double points. For a point P on a curve C,

P is an ordinary double point (or node)

def⇐⇒

{
the local equation around P ∈ C is given by xy = 0

for some formal coordinates x, y

⇐⇒ P is a point of multiplicity 2 with distinct tangent directions

2.4. Schottky uniformization

Schottky uniformization is to construct Riemann surfaces of genus g from a 2g

holed Riemann sphere by identifying these holes in pairs (Figure). More precisely, let

PGL2(C)
def
= GL2(C)/C×(·E2)

which acts on IP1(C) by the Möbius transformation, and let

D±1, ..., D±g ⊂ IP1(C) : disjoint closed domains bounded by Jordan curves ∂Di,

γ1, ..., γg ∈ PGL2(C) such that γi(IP
1(C)−D−i) = the interior D◦i of Di,

Γ
def
= ⟨γ1, ..., γg⟩ : the subgroup of PGL2(C) generated by γ1, ..., γg,

ΩΓ
def
=

∪
γ∈Γ

γ

(
IP1(C)−

g∪
i=1

(D◦i ∪D◦−i)

)
.

Then the Riemann surface

RΓ
def
=

(
IP1(C)−

g∪
i=1

(D◦i ∪D◦−i)

)/
∂Di

γi∼ ∂D−i (: gluing by γi)

= ΩΓ/Γ

is called (Schottky) uniformized by the Schottky group Γ. It is known that any Riemann

surface can be Schottky uniformized. Counterclockwise oriented ∂Di and oriented paths

from wi ∈ ∂D−i to γi(wi) ∈ ∂Di (1 ≤ i ≤ g) become canonical generators, and we denote

them by αi, βi respectively (Figure).
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Exercise 2.3. Prove that Γ is a free group with generators γ1, ..., γg, and that the action

of Γ on ΩΓ is free and properly discontinuous. Further, prove that each γi (1 ≤ i ≤ g) is
uniquely represented by

γi =

(
ti t−i

1 1

)(
1 0

0 si

)(
ti t−i

1 1

)−1
mod(C×),

where ti ∈ D◦i , t−i ∈ D◦−i and |si| < 1 (hence γi is hyperbolic (or loxodromic)), and that

t±i = lim
n→∞

γ±ni (z) (z ∈ ΩΓ).

ti, t−i are called the attractive, repulsive fixed point of γi respectively, and si is called

the multiplier of γi.

Theorem 2.2. (Schottky [S]) Assume that ∞ ∈ ΩΓ and that
∑

γ∈Γ |γ′(z)| converges
uniformly on any compact subset of

ΩΓ −
∪
γ∈Γ

γ(∞).

Then we have

(1) For n ≥ 1 and a point p ∈ ΩΓ −
∪

γ∈Γ γ(∞),

wn,p(z)
def
=
∑
γ∈Γ

dγ(z)

(γ(z)− p)n
=
∑
γ∈Γ

γ′(z)

(γ(z)− p)n
dz

becomes a meromorphic 1-form on RΓ. If n > 1, then wn,p is of the 2-nd kind, i.e., has

only poles of order n at the point p on RΓ induced from p, and if n = 1, then wn,p is of

the 3-rd kind, i.e., has only simple poles at p,∞. Furthermore, for n ≥ 0,∑
γ∈Γ

γ(z)ndγ(z) =
∑
γ∈Γ

γ(z)n · γ′(z)dz

becomes a meromorphic 1-form on RΓ which has only pole of order n+ 2 at ∞.
(2) For i = 1, ..., g,

ωi(z) =
1

2π
√
−1

∑
γ∈Γ/⟨γi⟩

(
1

z − γ(ti)
− 1

z − γ(t−i)

)
dz

give a base of H0(RΓ,ΩRΓ
) satisfying that

∫
αi

ωj = δij .

(3) For 1 ≤ i, j ≤ g and γ ∈ Γ, put

ψij(γ) =

 si (if i = j and γ ∈ ⟨γi⟩),
(ti − γ(tj))(t−i − γ(t−j))
(ti − γ(t−j))(t−i − γ(tj))

(otherwise).
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Then we have

exp
(
2π
√
−1zij

)
=

∏
γ∈⟨γi⟩\Γ/⟨γj⟩

ψij(γ),

where Z = (zij)i,j is the period matrix of (RΓ; (αi, βi)1≤i≤g).

Proof. The assertion (1) is evident except the convergence of wn,p(z) which follows from

the assumption and that the action of Γ on ΩΓ is properly discontinuous. Further, w1,p(z)

has simple poles at p,∞ with residues 1,−1 respectively, and satisfies that
∫
αi
w1,p = 0

(1 ≤ i ≤ g). Then by Exercise 2.2,

2π
√
−1ωi(z) = d

∫ γi(ζi)

ζi

∑
γ∈Γ

dγ(ζ)

γ(ζ)− z

 ; ζi is a point on ∂D−i

=

∑
γ∈Γ

log

(
(γγi)(ζi)− z
γ(ζi)− z

) dz

=
∑
γ∈Γ

(
1

z − (γγi)(wi)
− 1

z − γ(wi)

)
dz

=
∑

γ∈Γ/⟨γi⟩

∑
n∈Z

(
1

z − (γγn+1
i )(wi)

− 1

z − (γγni )(wi)

)
dz,

and since t±i = limn→∞ γ
±n
i (wi) ∈ D◦±i (Exercise 2.3), we have

ωi(z) =
1

2π
√
−1

∑
γ∈Γ/⟨γi⟩

(
1

z − γ(ti)
− 1

z − γ(t−i)

)
dz,

which proves (2). QED.

Exercise 2.4. Prove that
∫
αi
w1,p = 0 (1 ≤ i ≤ g), and check that ωi is Γ-invariant and∫

αi
ωj = δij .

Exercise 2.5. Prove (3) of Theorem 2.2.

Proposition. Assume that ΩΓ ∋ ∞, and that t±i are fixed and si are sufficiently small,

then the assumption in Theorem 2.2 is satisfied.

Proof. For 2 disks Di, Dj ⊂ C with radius ri, rj respectively, put

ρi,j : the distance between the centers of Di and Dj ,

Ki,j =
(r2i + r2j − ρ2i,j)2

4r2i r
2
j

− 1 ≥ 0,

Li,j =
1√

1 +Ki,j +
√
Ki,j

≤ 1.

14



Then Ki,j and Li,j are invariant under any Möbius transformation, and ri ≤ Li,j · rj if

Di ⊂ Dj . Under the assumption, one can take disks D±1, ..., D±g such that the sum of

Li,j (i, j ∈ {±1, ...,±g}, i ̸= j) is smaller than 1. Hence by the above, there is a positive

constant C such that if γ =
∏l

s=1 γk(s) ∈ Γ is expressed as(
aγ bγ

cγ dγ

)
mod(C×);

(
aγ bγ

cγ dγ

)
∈ SL2(C),

then

1

|cγ |2
≤ C ·

l−1∏
s=1

L−k(s),k(s+1).

Therefore, ∑
γ∈Γ−{1}

1

|cγ |2
≤ C ·

∞∑
m=0

∑
i̸=j

Li,j

m

<∞,

and hence ∑
γ∈Γ
|γ′(z)| ≤ 1 +

1

d(z)2

∑
γ∈Γ−{1}

1

|cγ |2

satisfies the condition since d(z)
def
= min{|z − γ−1(∞)|; γ ∈ Γ} > 0 is bounded on any

compact subset outside
∪

γ∈Γ γ(∞). QED

Remark. Schottky [S] gives a (more geometric) convergence condition on
∑

γ∈Γ |γ′(z)|
as follows: all ∂D±i can be taken as circles (in this case, Γ is called classical) and there

are 2g − 3 circles C1, ..., C2g−3 in F = IP1(C)−
∪g

i=1

(
D◦i ∪D◦−i

)
satisfying that

• C1, ..., C2g−3, ∂D±1, ..., ∂D±g are mutually disjoint;

• C1, ..., C2g−3 divide F into 2g − 2 domains R1, ..., R2g−2;

• each Ri has exactly three boundary circles.

Variation of forms and periods. Let Γ = ⟨γ1, ..., γg⟩ be a Schottky group of rank g

as above, and put Γ′ = ⟨γ1, ..., γg−1⟩ which is a Schottky group of rank g − 1. If the

multiplier

sg =
γg(z)− tg
z − tg

· z − t−g
γg(z)− t−g

: the product of local coordinates around tg, t−g respectively

of γg tends to 0, then

• RΓ −→

{
the singular curve R′Γ′ with unique singular (ordinary double) point

obtained by identifying 2 points tg, t−g ∈ RΓ′ ;

15



• 2π
√
−1 ωi(z) =

∑
γ∈Γ/⟨γi⟩

(
1

z − γ(ti)
− 1

z − γ(t−i)

)
dz ∈ H0 (RΓ,ΩRΓ

)

−→


∑

γ∈Γ′/⟨γi⟩

(
1

z − γ(ti)
− 1

z − γ(t−i)

)
dz (i < g),(

1

z − tg
− 1

z − t−g

)
dz + · · · (i = g)

which has a pole at the ordinary double point tg = t−g on R′Γ′ if i = g;

• (Fay’s formula [Fa]) pij −→

{
the multiplicative periods of RΓ′ (i, j < g),

0 (i = j = g).

Therefore, on the complex geometry of R′Γ′ , it is natural to replace the sheaf of holomor-

phic 1-forms on R′Γ′ by that of 1-forms η on RΓ′ holomorphic except for simple poles at

tg, t−g satisfying that Restg(η) + Rest−g(η) = 0 (see 3.2 below).

Remark. We can obtain variational formula under other degenerations (see [I3]).
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§3. Moduli space of algebraic curves

3.1. Construction of moduli

A scheme is a locally ringed space which is locally given by the affine scheme:

Spec(A)
def
= {prime ideals of A} ∋ p 7→ Ap

def
= {a/s | a ∈ A, s ∈ A− p}

associated with a commutative ring A with unit 1 (the category of affine schemes is

contravariantly equivalent to that of commutative rings with unit 1). A scheme X over

a scheme S is a scheme with morphism X → S.

The moduli space of curves is a space representing

the isomorphism classes of curves.

More precisely, ifMg is a fine moduli of curves of genus g, then

Mg(S)
def
= {morphisms from S toMg} (S : schemes)

functorial∼= {isomorphism classes of curves over S of genus g}

Caution! There is no fine moduli as an scheme since there are curves with nontrivial

automorphism (for example, hyperelliptic curves defined by y2 = f(x) has a nontrivial

automorphism x 7→ x, y 7→ −y).

Solutions.

(S1) Construct the fine moduli as an scheme by considering additional structures on

curves.

(S2) Taking the categorical quotient of the above fine moduli, construct the fine moduli

as an algebraic stack, the scheme-theoretic analog of orbifolds, which is repre-

sented as

[U/R] : the quotient of U by R,

where U,R are schemes with etale morphisms s, t : R → U and a morphism µ :

R ×U,t,s R → R such that (s, t) : R → U × U is finite and s, t, µ form a groupoid.

For a scheme S, [U/R] (S) = Hom(S,U/R) is the category given by

Ob ([U/R] (S))
def
= Hom(S,U),

Mor ([U/R] (S))
def
=

{
α ∈ Hom(S,R) giving s ◦ α ∼→ t ◦ α

}
,

and R gives the equivalence relation by µ.

(S3) Taking the geometric quotient of the above fine moduli, construct the coarse moduli

as an scheme.
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Moduli of elliptic curves.

• (S1) If E is an elliptic curve over C, and ι is an isomorphism Z⊕2
∼→ H1(E,Z)

such that ι is canonical, i.e., ι(e1), ι(e2) intersects as the x, y-axes, then the ratio(∫
ι(e2)

ω

)/(∫
ι(e1)

ω

)
is independent of ω ∈ H1(E,ΩE) − {0} and belongs to the Poincaré upper half

plane H1. Therefore, by the correspondence:

H1 ∋ τ ↔ (C/(Z+ Zτ); ι(e1) = 1, ι(e2) = τ) ,

H1 becomes the fine moduli space of elliptic curves E over C with canonical iso-

morphism Z⊕2
∼→ H1(E,Z).

(S2) By (S1), the fine moduli stack of elliptic curves over C is given by the complex

analytic stack, i.e. orbifold

[H1/SL2(Z)] .

(S3) Since

the elliptic curves y2i = 4x3i − αixi − βi (i = 1, 2) over C are isomorphic

⇔ there are a, b, c, d, e ∈ C with a, c ̸= 0 such that{
x2 = ax1 + b : order ≥ −2 at the origin,

y2 = cy1 + dx1 + e : order ≥ −3 at the origin

⇔ there are a, c ∈ C× such that a3 = c2, x2 = ax1, y2 = cy1

⇔ the j-invariants
α3
i

α3
i − 27β2i

of y2i = 4x3i − αixi − βi (i = 1, 2) are equal(
note that α3

i − 27β2i ̸= 0
)
,

the coarse moduli scheme of elliptic curves over C becomes the affine line over C,

and the j-function

j(τ)
def
=

(60E4(Z+ Zτ))3

(60E4(Z+ Zτ))3 − 27(140E6(Z+ Zτ))2

=
1

1728

(
1

q
+ 744 + 196884q + 21493760q2 + · · ·

) (
q

def
= e2π

√
−1τ
)

gives a biholomorphic map from the geometric quotient H1/SL2(Z) onto C.

• (S1) For complex numbers µ ̸= 1, ζ3 = e2π
√
−1/3, ζ23 , put

E(µ)
def
=

{
(x0 : x1 : x2) ∈ IP1(C) | x30 + x31 + x32 = 3µx0x1x2

}
: Hesse’s cubic

: an elliptic curve over C with origin (1 : −1 : 0) containing

3-division points (1 : −β : 0), (0 : 1 : −β), (−β : 0 : 1)
(
β = 1, ζ3, ζ

2
3

)
18



Then µ 7→ (E(µ) with the 3-division points) gives a bijection:

C−
{
1, ζ3, ζ

2
3

} ∼→


isomorphism classes of elliptic curves over C

with symplectic level 3 structure

(Z/3Z)⊕2
∼→ E[3]

def
= {P ∈ E | 3P = 0}


∼= H1/Γ(3),

where Γ(3) denotes the principal congruence subgroup of SL2(Z) of level 3. There-

fore, C−
{
1, ζ3, ζ

2
3

}
has a natural model over Z [1/3, ζ3] as the fine moduli scheme of

elliptic curves with level 3 structure, and this can be compactified to IP1 by adding

the 4 points 1, ζ3, ζ
2
3 ,∞ which correspond degenerate curves. I. Nakamura [Na] gave

this higher dimensional version, i.e., constructed a compactification of the moduli

of principally polarized abelian varieties with level structure as an moduli space.

(S2) The fine moduli stack over Z [1/3, ζ3] is given by the quotient stack of the

above model in (S1) by SL2 (Z/3Z) .

• (S1) If E is an elliptic curve over a scheme S with 0-section e : S → E, then

H0 (E,O(3 · e(S))) : the space of generalized elliptic functions

defines an embedding E ↪→ IP2
S . Therefore, by the theory of Hilbert schemes, there

is a fine moduli scheme H1 over Z classifying elliptic curves with embedding into

IP2
S as above.

(S2) The fine moduli stack over Z of elliptic curves is given by the quotient stack[
H1/Aut(IP

2)
]
= [H1/PGL3] ; PGLn

def
= GLn/Gm.

Exercise 3.1. Prove that for τ ∈ H1,

{γ ∈ SL2(Z) | γ(τ) = τ}

=



⟨
ρ

(
1 1

−1 0

)
ρ−1

⟩
: order 6 (if ∃ρ ∈ SL2(Z) such that τ = ρ(ζ3)),

⟨
ρ

(
0 1

−1 0

)
ρ−1

⟩
: order 4 (if ∃ρ ∈ SL2(Z) such that τ = ρ(

√
−1)),

⟨(
−1 0

0 −1

)⟩
: order 2 (otherwise).
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Construction of moduli for genus > 1. There are 3 approaches using

1. Teichmüller theory: Fix a Riemann surface R0 of genus g > 1. Then the Te-

ichmüller space of degree g is defined by

Tg
def
=

{
(R, h)

∣∣∣∣∣ R : Riemann surfaces of genus g

h : orientation preserving diffeomorphisms R0 → R

}/
∼

; (R, h) ∼ (R′, h′)
def⇐⇒ h′ ◦ h−1 is homotopic to a biholomorphic map,

and the Teichmüller modular group or mapping class group of degree g is defined

by

Πg
def
= {homotopy classes of orientation preserving diffeomorphisms R0 → R0}

which acts on Tg as µ(R, h) = (R, h ◦ µ) (µ ∈ Πg) properly discontinuously. Then the

quotient orbifold [Tg/Πg] exists and becomes the moduli space of Riemann surfaces of

genus g. Teichmüller proved that Tg is homeomorphic to R6g−6 and becomes naturally a

complex manifold of dimension 3g − 3 by using the theory of quasiconformal maps (see

[IT]). Since Tg is connected and simply connected,

π1 ([Tg/Πg]) ∼= Πg,

and these are canonically isomorphic to

Aut+ (π1(R0))
/
Inn (π1(R0)) ,

where Aut+ (π1(R0)) denotes the automorphism group of π1(R0) preserving the (alter-

nating and bilinear) intersection form on H1 (R0,Z) = π1(R0)/ [π1(R0), π1(R0)] , and

Inn (π1(R0)) denotes the inner automorphism group.

Caution! Is is shown by Royden that if g > 1, then Aut(Tg) = Πg, and hence the Tg is

not a homogeneous space. Therefore, one cannot regard the Teichmüller modular group

as a discrete subgroup of a Lie group.

2. Moduli theory of abelian varieties: A principally polarized abelian variety

(A,φ) is a pair of an abelian variety A, i.e., a proper (commutative) algebraic group and

an isomorphism A→ Â (: the dual abelian variety of A) induced from an ample divisor on

A. There exists a moduli space Ag of principally polarized g-dimensional abelian varieties,

and

Ag(C) ∼= [Hg /Sp2g(Z) ] .

Here

Hg
def
= {Z ∈Mg(C) | Z : symmetric, Im(Z) > 0}
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: the Siegel upper half space of degree g,

Sp2g(Z)
def
=

{
G ∈M2g(Z)

∣∣∣∣∣ G
(

0 Eg

−Eg 0

)
tG =

(
0 Eg

−Eg 0

)}
: the integral symplectic group of degree g over Z

acts on Hg as Z 7→ (AZ +B)(CZ +D)−1 for G =

(
A B

C D

)
,

and Z/ ∼ ∈ Hg/Sp2g(Z) corresponds to the pair of an abelian variety Cg/L, where

L = Zg + Zg · Z is the lattice in Cg generated by the unit vectors ei and the i-th row

vectors zi of Z), and the polarization associated with the alternating bilinear form ψ on

L× L such that

ψ(ei, ej) = ψ(zi, zj) = 0, ψ(ei, zj) = δij .

By Torelli’s theorem, by the correspondence:

proper smooth curves C

7−→ their Jacobian varieties Jac(C) with principally polarization

induced from the theta divisor {P1 + · · ·+ Pg−1 − (g − 1)P0 | Pi ∈ C} ,

the (coarse) moduli of proper smooth curves is realized as a subvariety of Ag. This fact

gives rise to the Schottky problem which means to characterize Jacobian varieties

among general abelian varieties, or to describe explicitly the subvariety of Ag consisting

of Jacobian varieties.

3. Geometric invariant theory: For a proper smooth curve C over S of genus g > 1,

the spaces H0(Cs,Ω
⊗3
Cs

) (s ∈ S) have dimension 5(g − 1) by Riemann-Roch’s theorem,

and give an embedding C ↪→ IP5g−6
S . Then by the theory of Hilbert schemes, there exists

a fine moduli scheme Hg over Z classifying tricanonically embedded curves C ↪→ IP5g−6
S ,

and hence the quotient stack

Mg
def
= [Hg/PGL5g−5]

is the fine moduli space of proper smooth curves of genus g. Since PGL5g−6 is smooth

and the functor S 7→ IsomS(C,C
′) is represented by a finite and unramified scheme

over S for curves C,C ′ over S, by an etale slice argument, Mg becomes an algebraic

stack. Furthermore, by showing that each point on Hg is stable under the action of

PGL5g−5, it follows from geometric invariant theory [FKM] by Mumford that the

geometric quotient Hg/PGL5g−5 exists and gives the coarse moduli scheme of proper

smooth curves of genus g.

Dictionary for the moduli stack. In what follows,

Mg
def
= the moduli stack over Z of proper smooth curves of genus g > 1.
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Then

Mg(C) = the quotient orbifold [Tg/Πg] ,

and for schemes (more generally algebraic stacks) S,

Mg(S) = the category of proper smooth curves over S of genus g

⇒ IdMg :Mg →Mg gives the universal curve C overMg.

Furthermore,

an object α on (over)Mg

⇐⇒ a system {αS} of objects on S for proper smooth curves over S of genus g

such that {αS} are functorial for S.

Dimension of the moduli.

• Analytic method: Since Aut(H1) = PSL2(R), by the theory of Fuchsian models,

for Riemann surfaces R = H1/π1(R), R
′ = H1/π1(R

′) of genus g > 1,

(R;π1(R) ↪→ PSL2(R)) ∼=
(
R;π1(R

′) ↪→ PSL2(R)
)

⇐⇒ π1(R) and π1(R
′) are conjugate in PSL2(R).

Therefore, under fixing a Riemann surface R0 of genus g,

Tg ∼=


conjugacy classes of injective homomorphisms

ι : π1(R0)→ PSL2(R) satisfying that

H1/ι(π1(R0)) are Riemann surfaces of genus g

 ,

and the real dimension of the right hand side is

dimR(PSL2(R)× (♯{generators of π1(R0)} − ♯{relations in π1(R0)} − 1)

= 6g − 6.

Furthermore, under the assumption that for Schottky uniformized Riemann surfaces

R,R′ of genus g > 1,

(R = ΩΓ/Γ; Γ ↪→ PGL2(C)) ∼=
(
R′ = ΩΓ′/Γ′; Γ′ ↪→ PGL2(C)

)
may be⇐⇒ Γ and Γ′ are conjugate in PGL2(C),

by letting Fg be the free group of rank g, we have

Mg(C) ∼=


conjugacy classes of injective homomorphisms

ι : Fg → PGL2(C) satisfying that

ι(Fg) are Schottky groups


/

Aut(Fg),

and the complex dimension of the right hand side is

dimC(PGL2(C)× (♯{generators of Fg} − 1) = 3g − 3.
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• Algebraic method (deformation theory [HrM]): For a field k,

A0
def
= k[ε]/(ε2),

C : a proper smooth curve over k of genus g > 1,

{Uα} : an affine open cover of C,

and let φαβ be a first-order infinitesimal deformation of C, i.e., A0-linear ring ho-

momorphisms

OUα×Spec(A0)|(Uα∩Uβ) → OUβ×Spec(A0)|(Uα∩Uβ)

satisfying that{
φαγ = φβγ ◦ φαβ on Uα ∩ Uβ ∩ Uγ (: the cocycle condition),

φαβ |(Uα∩Uβ)×Spec(k) is the identity.

Then the k-linear homomorphisms Dαβ : O(Uα∩Uβ) → O(Uα∩Uβ) given by φαβ(f) =

f + εDαβ(f) satisfies that

Dαβ(f · g) = f ·Dαβ(g) + g ·Dαβ(f), Dαγ(f) = Dβγ(f) ·Dαβ(f),

and hence {Dαβ} defines an element of the first cohomology H1(C, TC) of the tan-

gent bundle TC on C. Since dimk(C) = 1, the obstruction space is H2(C, TC) = {0},
and hence the tangent space of Mg ⊗Z k at the point [C] corresponding to C is

isomorphic to H1(C, TC). Therefore,

the dimension of the tangent space ofMg ⊗Z k at [C]

= dimkH
1(C, TC)

= dimkH
0(C,Ω⊗2C ) (by Serre’s duality)

= 3g − 3 (by Riemann-Roch’s theorem and that deg(ΩC) = 2g − 2 > 0).

Remark. For proper smooth curves C,

H1(C, TC) ∼= Ext1(OC , TC) ∼= Ext1(ΩC ,OC),

and the last group also classifies first-order infinitesimal deformations of stable curves.

3.2. Stable curves and their moduli

Stable curves. A stable curve of genus g > 1 over a scheme S is a proper and flat mor-

phism C → S whose geometric fibers are reduced and connected 1-dimensional schemes

Cs such that

• Cs has only ordinary double points;
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• Aut(Cs) is a finite group, i.e., if X is a smooth rational component of Cs, then X

meets the other components of Cs at least 3 points;

• the dimension of H1(Cs,OCs) is equal to g.

For a stable curve C over S (may not be smooth), it is useful to consider the dualiz-

ing sheaf (or canonical invertible sheaf) ωC/S on C which is defined as the following

conditions:

• ωC/S is functorial on S;

• if S = Spec(k) (k is an algebraically closed field), f : C ′ → C be the normalization

(resolution) of C, x1, ..., xn, y1, ..., yn, are the points of C ′ such that zi = f(xi) =

f(yi) (1 ≤ i ≤ n) are the ordinary double points on C, then ωC/S is the sheaf of

1-forms η on C ′ which are regular except for simple poles at xi, yi such that

Resxi(η) + Resyi(η) = 0.

Then it is shown by Rosenlicht and Hartshorne that ωC/S is a line bundle on C, Riemann-

Roch’s theorem holds for the canonical divisor corresponding to ωC , and

dimH1(Cs,OCs) = dimH0(Cs, ωCs).

Theorem 3.1. (Deligne and Mumford [DM]) There exists the fine moduli space Mg

(called Deligne-Mumford’s compactification of Mg) as an algebraic stack over Z

classifying stable curves of genus g > 1. Mg is proper smooth over Z, and contains Mg

as its open dense substack.

Sketch of proof. The construction ofMg is similar to that ofMg by replacing ΩC with

dualizing sheaves ωC . The properness ofMg follows from the valuative criterion and the

stable reduction theorem: Let R be a discrete valuation ring with quotient field K,

and let C be a proper and smooth curve over K of genus g > 1. Then there exists a finite

extension L of K and a stable curve C over the integral closure RL of R in L such that

C ⊗RL
L ∼= C ⊗K L.

Irreducibility of the moduli.

As an application of Theorem 3.1, Deligne and Mumford [DM] proved the irreducibility

of any geometric fibers ofMg by applying Enriques-Zariski’s connectedness theorem to

the proper and smooth stackMg over Z whose fiber overC is connected (by Teichmüller’s

theory). Therefore,

Any geometric fiber of Mg is irreducible.
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This fact is essentially used in 4.3 to study automorphic forms on the moduli of curves.

3.3. Tate curve and Mumford curves

In order to study arithmetic geometry onMg, we want to

put local coordinates onMg

←→ make a family of curves over the coordinate ring.

By the theory of the Tate curve and its higher genus version, we can put good coordinates

near the boundary ofMg in terms of arithmetic geometry as follows.

Tate curve. Recall that an elliptic curve C/L is defined by the equation (see 2.1):

y2 = 4x3 − 60E4(L)x− 140E6(L).

Therefore, if

x = (2π
√
−1)2

(
x′ +

1

12

)
, y = (2π

√
−1)3

(
2y′ + x′

)
,

a4 = − 15E4(L)

(2π
√
−1)4

+
1

48
, a6 = − 35E6(L)

(2π
√
−1)6

− 5E4(L)

4(2π
√
−1)4

+
1

1728
,

then the above equation is equivalent to

y′2 + x′y′ = x′3 + a4x
′ + a6.

Furthermore, if L = Z+Zτ and q = e2π
√
−1τ , then by the calculation of the Eisenstein

series (see Exercise 3.2 below):

∑
u∈L−{0}

1

u2k
= 2ζ(2k) +

2(2π
√
−1)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n) q
n (k > 1),

where

ζ(2k)
def
=

∞∑
n=1

1

n2k
: the zeta values, and σ2k−1(n)

def
=
∑
d|n

d2k−1,

we have

a4(q) = −5
∞∑
n=1

σ3(n) q
n = −5q − 45q2 + · · · ,

a6(q) = − 1

12

∞∑
n=1

(5σ3(n) + 7σ5(n)) q
n = −q − 23q2 + · · · .
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Exercise 3.2. Prove that

ζ(2k) = −(2π
√
−1)2k

2(2k)!
B2k(

Bn is the n-th Bernoulli numbers given by
x

ex − 1
=
∞∑
n=0

Bn
xn

n!

)

⇒ ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
,

and ∑
(m,n)∈Z2−{(0,0)}

1

(m+ nτ)2k
= 2ζ(2k) +

2(2π
√
−1)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n) q
n (k > 1),

from the well-known formula:

π cot(πa) =
1

a
+

∞∑
m=1

(
1

a+m
+

1

a−m

) (
⇔ sin z = z

∞∏
n=1

(
1− z2

n2π2

))
by substituting x to 2π

√
−1a, and differentiating the formula successively and substitut-

ing nτ to a respectively.

Exercise 3.3. Show that a4(q) and a6(q) belong to the ring

Z[[q]]
def
=

{ ∞∑
n=0

cnq
n

∣∣∣∣∣ cn ∈ Z

}
of formal power series of q with coefficients in Z.

The Tate curve is the curve over Z[[q]] defined by

y2 + xy = x3 + a4(q)x+ a6(q).

Then Tate proved the following:

Theorem 3.2. ([Si, T])

(1) The Tate curve becomes an elliptic curve over the ring

Z((q))
def
= Z[[q]] [1/q] =

{ ∞∑
n>m

cnq
n

∣∣∣∣∣ m ∈ Z, cn ∈ Z

}
of Laurent power series of q with coefficients in Z.

(2) Put

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2

∞∑
n=1

σ1(n)q
n,

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+

∞∑
n=1

σ1(n)q
n.
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Then z 7→
(
X(e2π

√
−1z, e2π

√
−1τ ), Y (e2π

√
−1z, e2π

√
−1τ )

)
gives rise to an isomorphism

between C/L and the elliptic curve Eτ over C obtained from the Tate curve by substituting

q = e2π
√
−1τ .

(3) Let K be a complete valuation field with multiplicative valuation | · |, and let q ∈ K×

satisfy that |q| < 1. Then by the substitution the variable q 7→ q ∈ K×, the series a4(q)

and a6(q) converge in K, and the Tate curve gives an elliptic curve Eq over K. Further,

we have an isomorphism:

K×/⟨q⟩ ∼−→ Eq(K)

u mod⟨q⟩ 7−→

{
(X(u, q), Y (u, q)) (u ̸∈ ⟨q⟩),
0 (u ∈ ⟨q⟩).

Proof. (1) The discriminant ∆ of the Tate curve is given by

−a6(q) + a4(q)
2 + 72a4(q)a6(q)− 64a4(q)

3 − 432a6(q)
2

= q − 24q2 + · · · : a formal power series with integral coefficients

in fact
= q

∞∏
n=1

(1− qn)24 : a cusp form of weight 12 for SL2(Z).

Therefore, the Tate curve is smooth over Z[[q]] [1/∆] = Z((q)).

(2) First, note that the following hold:

℘L(z)

(2π
√
−1)2

=
∑
n∈Z

qnu

(1− qnu)2
+

1

12
− 2s1(q)

(
s1(q)

def
=

∞∑
n=1

σ1(n)q
n

)
,

℘′L(z)

(2π
√
−1)3

=
∑
n∈Z

qnu(1 + qnu)

(1− qnu)3
,

because the right hand sides are invariant under u 7→ qu, hence invariant under z 7→
z + 1, z + τ, and they have the same principal parts at z = 0 to the left hand sides.

Therefore,

x′ =
x

(2π
√
−1)2

− 1

12
=

℘L(z)

(2π
√
−1)2

− 1

12
= X(u, q),

y′ =
y

2(2π
√
−1)3

− x

2(2π
√
−1)2

+
1

24

=
℘′L(z)

2(2π
√
−1)3

− ℘L(z)

2(2π
√
−1)2

+
1

24

=
1

2

∑
n∈Z

qnu(1 + qnu)

(1− qnu)3
− 1

2

∑
n∈Z

qnu

(1− qnu)2
+ s1(q)

= Y (u, q).
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As seen in 2.1, z + L 7→ (x = ℘L(z), y = ℘′L(z)) is an isomorphism from C/L onto the

elliptic curve y2 = 4x3 − 60E4(L)x− 140E6(L), and hence

z + L 7→ (x′ = X(u, q), y′ = Y (u, q))

gives an isomorphism C/L
∼→ Eτ .

(3) By substituting the variable q 7→ q ∈ K× with |q| < 1, ∆ = q − 24q2 + · · · satisfies
that |∆| = |q| ̸= 0, and hence Eq is an elliptic curve over K. By (2), X(u, q) and Y (u, q)

satisfies the equation of the Tate curve:

Y (u, q)2 +X(u, q)Y (u, q) = X(u, q)3 + a4(q)X(u, q) + a6(q)

for all complex numbers u, q in a certain convergence domain, and hence this equation

holds as formal power series in q with coefficients in Q(u). Therefore, by substituting the

variable q 7→ q ∈ K× with |q| < 1, one can see that the map in (3) is well-defined, and is

evidently injective. The addition law on the Tate curve is given by

Pi = (xi, yi) (i = 1, 2, 3), P1 + P2 = P3

−→

{
(x2 − x1)2x3 = (y2 − y1)2 + (y2 − y1)(x2 − x1)− (x2 − x1)2(x1 + x2),

(x2 − x1)y3 = (−(y2 − y1) + (x2 − x1))x3 − (y1x2 − y2x1),

if x1 ̸= x2. Hence by (2), this holds if xi = X(ui, q), yi = X(ui, q), (i = 1, 2, 3) with

u1u2 = u3 for all complex numbers u1, u2, q in a certain convergence domain, and hence

holds as formal power series in q with coefficients in Q(u1, u2). Therefore, by substituting

the variable q 7→ q ∈ K× with |q| < 1, one can see that the map in (3) is a homomorphism.

We omit the surjectivity of the map which is most hardest part of the proof. QED.

Remark. Similar argument to the proof of Theorem 3.2 (3) is used in [I1] to show that

p-adic theta functions of Mumford curves give solutions to soliton equations.

Mumford curves. Mumford [Mu2] gave a higher genus version of the Tate curve over

complete local domains as an analogy of Schottky uniformization theory, i.e., for a com-

plete integrally closed noetherian local ring R with quotient field K, and a Schottky

group Γ ⊂ PGL2(K) over K which is flat over R, he constructed a Mumford curve

over (R ⊂)K which is a proper smooth curve CΓ over K obtained as the general fiber

of a stable curve over R uniformized by Γ such that its special fiber consists of (may be

singular) projective lines and its singularities are all k-rational (k is the residue field of

R). Furthermore, he showed that Γ 7→ CΓ gives rise to the following bijection:{
Conjugacy classes of flat

Schottky groups over (R ⊂)K

}
∼←→

{
Isomorphism classes of

Mumford curves over (R ⊂)K

}
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If K is a complete valuation field, then any Schottky group Γ over K is flat over its

valuation ring, and it is shown in [Gv] that CΓ is given as the quotient by Γ of its region

of discontinuity in K ∪ {∞} (important examples of rigid analytic geometry).

3.4. Arithmetic Schottky uniformization

Degenerate curves and dual graphs. A degenerate curve is a stable curve whose

irreducible components are (may be singular) projective lines. For a degenerate curve,

by the correspondence:

its irreducible components ←→ vertices

its singular points ←→ edges

(an irreducible component contains a singular point if and only if the corresponding vertex

is contained in (or adjacent to) the corresponding edge), we have its dual graph which

becomes a stable graph, i.e., a connected and finite graph whose vertices has at least 3

branches (Figure). For a degenerate curve C with dual graph ∆,

the genus of C = rankZH1(∆,Z)

= the number of generators of the free group π1(∆).

Since any triplet of distinct points on IP1 is uniquely translated to (0, 1,∞) by the

action of PGL2, for a stable graph ∆, the moduli space of degenerate curves with dual

graph ∆ has dimension ∑
v: vertices of ∆

(deg(v)− 3) ,

where deg(v) denotes the number of branches ( ̸= edges) starting from v. In particular,

a stable graph is trivalent, i.e., all the vertices have just 3 branches if and only if the

corresponding curves are maximally degenerate which means that this moduli consists

of only one point.

Exercise 3.4. For any stable graph ∆, prove that∑
v: vertices of ∆

(deg(v)− 3) + the number of edges of ∆ = 3 (rankZH1(∆,Z)− 1) .

General degenerating process. (Ihara and Nakamura [IN]). For a stable graph ∆ with

orientation on each edge,

g
def
= rankZH1(∆,Z),

Pv
def
= IP1(C) (v : vertices of ∆).
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and for each oriented edge e (v−e
e→ ve) of ∆, let

ve
def
= the end point of e,

v−e
def
= the starting point of e,

γe : a hyperbolic element of PGL2(C) which gives γe : Pv−e

∼→ Pve ,

te ∈ Pve : the attractive fixed point of γe,

t−e ∈ Pv−e : the repulsive fixed point of γe.

Fix a vertex v0 of ∆, and put

Γ
def
=

{
γi1e1 · · · γ

in
en

∣∣ ek : edges, ik ∈ {±1} such that einn · · · e
i1
1 ∈ π1(∆; v0)

}
.

Then under the assumption that the multipliers se of all γe are sufficiently small,

• Γ is a Schottky group of rank g;

• If ∞ ∈ ΩΓ, then
∑

γ∈Γ |γ′(z)| converges uniformly on any compact subset of ΩΓ −∪
γ∈Γ γ(∞);

• RΓ = ΩΓ/Γ is a Riemann surface of genus g obtained from holed Riemann spheres

Pv (v : vertices of ∆) gluing by γe (e : edges of ∆);

and hence

se → 0 (e : edges of ∆)

⇒ RΓ → the degenerate curve C0 =

(∪
v

Pv

)/
te = t−e

(e : edges of ∆)
with dual graph ∆.

Since IP1 has only trivial deformation, RΓ gives a universal deformation of C0, and hence

varying t±e as the moduli parameters, se as the deformation parameters, RΓ make

an open subset (of dimension 3g − 3 by Exercise 3.4) of the moduli space of curves of

genus g.

Arithmetic Schottky uniformization. An extension of this process in terms of arith-

metic geometry (unifying complex geometry and formal geometry over Z, hence rigid

geometry) is the following arithmetic Schottky uniformization theory which also

gives a higher genus version of the Tate curve:

Theorem 3.3. ([I3], (1)–(3) were already proved in [IN] for maximally degenerate case

without singular components). Let

A0
def
= the coordinate ring of the moduli space (i.e., the ring of moduli parameters)

over Z of degenerate curves with dual graph ∆,

A∆
def
= A0[[ye (e : edges of ∆)]].
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Then there exists a stable curve C∆ (called the generalized Tate curve) over A∆ of

genus g
def
= rankZH1(∆,Z) satisfying:

(1) C∆ is a universal deformation of the universal degenerate curve with dual graph ∆.

(2) By substituting complex numbers t±e to the moduli parameters and se ∈ C× to

ye (e are edges of ∆), C∆ becomes a Schottky uniformized Riemann surface if se are

sufficiently small.

(3) C∆ is smooth over B∆ = A∆ [1/ye (e : edges of ∆)] , and is Mumford uniformized

by a Schottky group over B∆. Furthermore, for a complete integrally closed noetherian

local ring R with quotient field K and a Mumford curve C over (R ⊂)K such that ∆ is

the dual graph of its degenerate reduction, there is a ring homomorphism A∆ → R gives

rise to C∆ ⊗A∆
K ∼= C.

(4) Using Mumford’s theory [Mu3] on degenerating abelian varieties, the generalized

Jacobian of C∆ can be expressed as

Gg
m /⟨(pij)1≤i≤g | 1 ≤ j ≤ g⟩; Gm

def
= the multiplicative algebraic group,

where the multiplicative periods pij of C∆ (called universal periods) are given as com-

putable elements of B∆.

Generalized Tate curves

complex geometry ↙ ↘ rigid geometry

Schottky uniformized

Riemann surfaces
Mumford curves

Sketch of proof.

• Step 1 of constructing C∆ is to give a Schottky group Γ∆ over B∆ as in the above

general degenerating process, and show that Γ∆ is flat over A∆ (note that this fact

together with the result of [Mu2] cannot imply the existence of C∆ since A∆ is not

local).

• Step 2 is, following argument in [Mu2], to show that the collection of sets consisting

of 3 fixed points in IP1 of Γ−{1} gives rise to a tree which is the universal cover of

∆ with covering group ∆, and to construct C∆ as the quotient by Γ of the glued

scheme of IP1
A∆

associated with this tree using Grothendieck’s formal existence

theorem.

• In order to give a power series expansion of pij , use the infinite product presentation

by Schottky [S], Manin and Drinfeld [MD] of the multiplicative periods given in

Theorem 2.2 (3).

31



Example 3.1. When ∆ consists of one vertex and g loops, degenerate curves with dual

graph ∆ are obtained from IP1 with 2g points x±1, ..., x±g by identifying xi = x−i (1 ≤
i ≤ g). Then

A0 = Z

[
(xi − xj)(xk − xl)
(xi − xl)(xk − xj)

(
i, j, k, l ∈ {±1, ...,±g}

: mutually different

)]
,

A∆ = A0[[y1, ..., yg]],

and C∆ is uniformized by

Γ∆
def
=

⟨
ϕi

def
=

(
xi x−i

1 1

)(
1 0

0 yi

)(
xi x−i

1 1

)−1
mod(Gm)

∣∣∣∣∣∣ 1 ≤ i ≤ g

⟩
.

Hence by Theorem 2.2 (3) (Exercise 2.5),

pij =
∏

ϕ∈⟨ϕi⟩\Γ∆/⟨ϕj⟩

ψij(ϕ),

where

ψij(ϕ) =

 yi (if i = j and ϕ ∈ ⟨ϕi⟩),
(xi − ϕ(xj))(x−i − ϕ(x−j))
(xi − ϕ(x−j))(x−i − ϕ(xj))

(otherwise).

Let I∆ be the ideal of A∆ generated by y1, ..., yg, and put ϕ−i
def
= ϕ−1i (1 ≤ i ≤ g). Then

Φij =

{
ϕ = ϕσ(1) · · ·ϕσ(n)

∣∣∣∣∣ σ(1) ̸= ±i, σ(n) ̸= ±j,σ(k) ̸= −σ(k + 1) (1 ≤ k ≤ n− 1)

}
gives a set of complete representatives of ⟨ϕi⟩\Γ∆/⟨ϕj⟩. For ϕ = ϕσ(1) · · ·ϕσ(n) ∈ Φij ,

ϕ(x±j) ∈ xσ(1) + I∆, and

ϕ(xj)− ϕ(x−j)

=
(xσ(1) − x−σ(1))2(ϕ′(xj)− ϕ′(x−j))yσ(1)

(ϕ′(xj)− x−σ(1) − yσ(1)(ϕ′(xj)− xσ(1)))(ϕ′(x−j)− x−σ(1) − yσ(1)(ϕ′(x−j)− xσ(1)))

(ϕ′
def
= ϕσ(2) · · ·ϕσ(n))

= · · · ∈ In∆.

by inductive calculus, and hence

(xi − ϕ(xj))(x−i − ϕ(x−j))
(xi − ϕ(x−j))(x−i − ϕ(xj))

= 1 +
(xi − x−i)(ϕ(xj)− ϕ(x−j))
(xi − ϕ(x−j))(x−i − ϕ(xj))

∈ 1 + In∆.

Therefore,

pij = cij

1 +
∑
|k|≠i,j

(xi − x−i)(xj − x−j)(xk − x−k)2

(xi − xk)(x−i − xk)(xj − x−k)(x−j − x−k)
y|k| + · · ·

 ,
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where

cij
def
=

 yi (if i = j),
(xi − xj)(x−i − x−j)
(xi − x−j)(x−i − xj)

(if i ̸= j).

Remark. Denote by

Tg : the Teichmüller space of degree g,

Sg : the Schottky space of degree g

(the moduli space of Schottky groups with free g generators),

Hg : the Siegel upper half space of degree g.

Then
Tg

p−→ Hg : the period map (transcendental)

↓ ↓ exp(2π
√
−1·)

Sg −→ Hg/Z
g(g+1)/2 : computable as power series

↓ ↓
Mg(C)

τ−→ Hg/Sp2g(Z) : the Torelli map (algebraic).

Exercise 3.5. Give a definition of the above period map p : Tg → Hg.

Problem. When any vertex of ∆ has just 3 branches (i.e., the corresponding degenerate

curve is maximally degenerate), the moduli space of degenerate curves with dual graph

∆ consists of one point, and hence A0 = Z. Then express integral coefficients of

pij ∈ A∆ = Z[[ye (e : edges of ∆)]]

by using some arithmetic functions.

Problem. Give the equation of the Tate curve using Theorem 2.2 (1).
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§4. Automorphic forms on the moduli space

4.1. Elliptic modular forms

The Eisenstein series of even degree 2k ≥ 4 (appeared in the Laurent coefficients of the

℘-function ℘Z+Zτ (z)):

E2k(τ)
def
=

∑
(m,n)∈Z2−{(0,0)}

1

(m+ nτ)2k
Ex.3.1
= 2ζ(2k) +

2(2π
√
−1)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n) q
n

: the Fourier expansion
(
q = e2π

√
−1τ
)

is a holomorphic function of τ ∈ H which satisfies the following 2 conditions for SL2(Z):

• Automorphy condition of weight 2k :

E2k

(
aτ + b

cτ + d

)
= (cτ + d)2kE2k(τ) for any

(
a b

c d

)
∈ SL2(Z);

• Cusp condition :

E2k(τ) is holomorphic at q = 0
(
⇔ τ = the unique cusp

√
−1 · ∞ of SL2(Z)

)
.

(Elliptic) modular forms are holomorphic functions on H satisfying the automorphy

and cusp conditions for a congruence subgroup of SL2(Z).

Fourier expansion and number theory.

• σ7(n) = σ3(n) + 120

n−1∑
i=1

σ3(i)σ3(n− i)
(
⇐ E4(τ)

2 =
7

9
E8(τ) in Exercise 2.1

)
.

• Jacobi’s theorem : ♯

{
(ai)1≤i≤4 ∈ Z4

∣∣∣∣∣
4∑

i=1

a2i = n

}
= 8

∑
d|n,4-d

d(
⇐ the theta series

(∑
n∈Z q

n2
)4

is expressed by Eisenstein series for Γ(2)

)
.

• Deligne-Serre’s theorem [D1, DS]: For a normalized Hecke eigenform f =
∑

n a(n)q
n

of weight k and character ε for Γ0(N), there is a 2-dimensional Galois representation

ρf such that tr(ρf (Fp)) = a(p) and det(ρf (Fp)) = ε(p)pk−1 for any Frobenius

automorphism Fp for unramified primes p.

• Serre’ example [Se]: Let L be the decomposition field of x3−x−1 which is a Galois

extension over Q with Galois group S3 (: the symmetric group of degree 3) and

contains K = Q(
√
−23), and let

f(τ) =
1

2

 ∑
m,n∈Z

qm
2+mn+6n2 −

∑
m,n∈Z

q2m
2+mn+3n2

 =

∞∑
n=1

a(n)qn.
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Then f(τ) is a normalized Hecke eigenform of weight 1, and hence by Deligne-Serre’s

theorem, for any prime p ̸= 23, tr(ρf (Fp)) = a(p), det(ρf (Fp)) =

(
−23
p

)
=
( p
23

)
and ♯⟨ρ(Fp)⟩ is equal to the residue index fL/Q(p) of p in L/Q (an example of

nonabelian class field theory).

Exercise 4.1. Let the notation be as in the above Serre’s example. Then prove that for

p ̸= 23, one of the following cases necessarily happens:

a(p) = 2,
( p
23

)
= 1 ⇐⇒ fL/Q(p) = 1,

a(p) = 0,
( p
23

)
= −1 ⇐⇒ fK/Q(p) = 2, fL/Q(p) = 2,

a(p) = −1,
( p
23

)
= 1 ⇐⇒ fK/Q(p) = 1, fL/Q(p) = 3,

and describe the decomposition of primes 2, 3, 5, 59 in K and L respectively.

Rationality of modular forms. For τ ∈ H1,

Eτ
def
= C/(Z+ Zτ) define a family of elliptic curves over H1,

zτ
def
= the natural coordinate of C

⇒ dzτ : a canonical base of H0(Eτ ,ΩEτ ),

and (
a b

c d

)
∈ SL2(Z)

⇒ Eaτ+b
cτ+d

×(cτ+d)−→ C/(Z(cτ + d) + Z(aτ + b)) = C/(Z+ Zτ) = Eτ

⇒ dzaτ+b
cτ+d

=
1

cτ + d
dzτ .

If f(τ) is a modular form of weight k for SL2(Z), then

f

(
aτ + b

cτ + d

)(
daτ+b

cτ+d

)⊗k
= (cτ + d)kf(τ)

(
1

cτ + d

)k

(dzτ )
⊗k = f(τ)(dzτ )

⊗k,

and hence f(τ)dzτ (τ ∈ H1) is SL2(Z)-invariant, i.e., defines a holomorphic section of

the line bundle on [H1/SL2(Z)] whose fiber over τ ∈ H1 is given by H0(Eτ ,ΩEτ )
⊗k.

Let M1 be the moduli stack of elliptic curves, π : E → M1 be the universal elliptic

curve, and π∗(ΩE/M1
) denote a line bundle on M1 defined by the direct image of the

sheaf ΩE/M1
of relative 1-forms on E/M1, i.e.,

π∗(ΩE/M1
)(S)

def
= H0(E,ΩE/S),
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for elliptic curves E over schemes S. Then an integral modular form f of weight k is

defined as an element of

H0
(
M1, π∗ (ΩE/M1)

⊗k
)
,

i.e., a global section of π∗(ΩE/M1
)⊗k on M1 which is, by the above dictionary on the

moduli stack, a system of{
sections fS of H0

(
E,ΩE/S

)⊗k ∣∣∣ E : elliptic curves over S
}

which are functorial for schemes S. Hence

E/S : the Tate curve y2 + xy = x3 + a4(q)x+ a6(q) over Z((q))

⇒ du

u
=

dX(u, q)

X(u, q) + 2Y (u, q)
=

dx

x+ 2y
: a base of 1-forms on the Tate curve

⇒ f is represented as F (f)

(
dx

x+ 2y

)⊗k
,

where F (f) ∈ Z((q)) is called the evaluation of f on the Tate curve under the trivial-

ization of π∗
(
ΩE/M1

)
on Z((q)). By Theorem 3.2 (2),

q = e2π
√
−1τ ⇒ C/(Z+ Zτ) ∼= C×/⟨q⟩

⇒ dx

x+ 2y
= 2π

√
−1 d℘Z+Zτ (zτ )

℘′Z+Zτ (zτ )
= 2π

√
−1dzτ

⇒ f(τ) = (2π
√
−1)kF (f)(dzτ )⊗k.

Therefore, ignoring the factor (2π
√
−1)k,

the evaluation on the Tate curve = the classical Fourier expansion,

and hence

a modular form is integral ⇐⇒ its Fourier coefficients are integral.

Exercise 4.2.

• Prove that
E4(τ)

2ζ(4)
,
E6(τ)

2ζ(6)
and ∆(τ)

def
=

1

1728

((
E4(τ)

2ζ(4)

)3

−
(
E6(τ)

2ζ(6)

)2
)

are inte-

gral (elliptic) modular forms for SL2(Z).

• Using that ∆(τ) ̸= 0 (τ ∈ H) and that modular forms for SL2(Z) of weight 0 are

constant, prove that all integral modular forms for SL2(Z) are generated over Z by

these 3 modular forms.
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4.3. Siegel modular forms (SMFs)

Moduli of abelian varieties. Let g be a positive integer > 1. Then in a similar way

to constructing moduli of curves given in 3.1, it is shown in [FKM] that there exists the

fine moduli space Ag as an algebraic stack over Z classifying principally polarized abelian

varieties of dimension g. By the correspondence:

Z =

 z1

...

zg

 ∈ Hg : the Siegel upper half space of degree g

↔

(
Cg/(Zg + Zg · Z); ι(ei) =

{
ei (1 ≤ i ≤ g),
zi−g (g + 1 ≤ i ≤ 2g)

)
,

Hg becomes the fine moduli space of principally polarized abelian varietiesX of dimension

g overC with symplectic isomorphism Z2g ∼→ H1(X,Z). Hence the orbifoldAg(C) is given

by the quotient stack of Hg by the integral symplectic group Sp2g(Z) of degree g :

Ag(C) = [Hg/Sp2g(Z)] .

Definition of SMFs. Let λ be the Hodge line bundle on Ag which is defined by

λ
def
=

g∧
ρ∗
(
ΩX/Ag

)
(ρ : X → Ag denotes the universal abelian scheme)

⇒ λ(S) =

g∧
H0
(
X,ΩX/S

)
for abelian schemes X/S of relative dimension g.

Then for h ∈ Z and a Z-module M, we call elements of

Sg,h(M)
def
= H0

(
Ag, λ

⊗h ⊗Z M
)

Siegel modular forms of degree g and weight h with coefficients in M.

For the natural coordinate z1, ..., zg on the complex abelian varieties XZ = Cg/(Zg +

Zg · Z), dz1, ..., dzg give a base of H0(XZ ,ΩXZ
), and hence as in the elliptic case,

φ = (2π
√
−1)gh · f · (dz1 ∧ · · · ∧ dzg)⊗h ∈ Sg,h(C) = H0

(
[Hg/Sp2g(Z)] , λ

⊗h
)

(∗)⇒


f = f(Z) is a holomorphic function of Z ∈ Hg such that

f(G(Z)) = det(CZ +D)h · f(Z) for any G =

(
A B

C D

)
∈ Sp2g(Z)

which is known as the usual definition of analytic Siegel modular forms. In particular,

f(Z) is invariant under the transformation

Z 7−→ Z +B
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by integral symmetric matrices B of degree g, and hence it can be expanded as a power

series of exp
(
2π
√
−1zij

)
(Z = (zij)i,j ∈ Hg) which is called the (classical) Fourier ex-

pansion of f.

Exercise 4.3. Prove the above
(∗)⇒ .

It is shown by Satake that Ag/C = Ag ⊗Z C has the Satake compactification:

A∗g/C =

g⨿
i=0

Ai/C,

obtained as the Zariski closure of a projective embedding using Siegel modular forms of

sufficiently large weight. Then the codimension of A∗g/C −Ag/C in A∗g/C is

g(g + 1)

2
− (g − 1)g

2
= g > 1,

and hence ignoring (2π
√
−1)gh (dz1 ∧ · · · ∧ dzg)⊗h ,

φ is an analytic Siegel modular form

⇒ φ is an analytic section on A∗g/C (by Hartogs’ theorem)

⇒ φ is an algebraic section on A∗g/C (by GAGA’s principle of Serre)

⇒ φ is an algebraic section on Ag/C

⇒ φ ∈ Sg,h(C).

Therefore, the above
(∗)⇒ is in fact an equivalence

(∗)⇐⇒, and Sg,h(C) is finite dimensional

over C by the compactness of A∗g/C.

Fourier expansion of SMFs. By Mumford’s theory [Mu3] on degenerating abelian va-

rieties, there exists a semiabelian scheme expressed as

Gg
m/ ⟨(qij)1≤i≤g | 1 ≤ j ≤ g⟩

over the ring

Z
[
q±1ij (i ̸= j)

]
[[q11, ..., qgg]],

where qij (1 ≤ i, j ≤ g) are variables with symmetry qij = qji. This semiabelian scheme

gives a family of complex abelian varieties

Cg/ (Z+ Z · Z) ∼=
(
C×
)g/⟨(

exp(2π
√
−1zij)

)
1≤i≤g | 1 ≤ j ≤ g

⟩
when qij = exp(2π

√
−1zij) for Z = (zij)i,j ∈ Hg. Then the natural coordinates u1, ..., ug

on Gg
m give a base du1/u1, ..., dug/ug of 1-forms on this semiabelian scheme, and hence
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the evaluation of any φ ∈ Sg,h(M) gives

φ = F (φ) · ((du1/u1) ∧ · · · ∧ (dug/ug))
⊗h

= (2π
√
−1)gh · F (φ) · (dz1 ∧ · · · ∧ dzg)⊗h (if M = C and ui = exp(2π

√
−1zi)).

Therefore, we have a linear map:

F : Sg,h(M) −→ Z
[
q±1ij (i ̸= j)

]
[[q11, ..., qgg]]⊗Z M,

which we call the arithmetic Fourier expansion.

Theorem 4.1. (Chai and Faltings [FC])

(1) (Arithmetic Fourier expansion) F is functorial for M, and if M = C, then F (φ) is

the classical Fourier expansion by qij = exp
(
2π
√
−1zij

)
for (zij)i,j ∈ Hg. Furthermore,

F is injective, and for a submodule N of M and φ ∈ Sg,h(M),

φ ∈ Sg,h(N) ⇐⇒ F (φ) ∈ Z
[
q±1ij

]
[[qii]]⊗Z M.

(2) (Finiteness) Sg,h(Z) is a free Z-module of finite rank such that Sg,h(Z) ⊗Z C =

Sg,h(C) and that Sg,0(Z) = Z, Sg,h(Z) = {0} if n < 0. Furthermore, the ring of integral

Siegel modular forms of degree g over Z :

S∗g (Z)
def
=
⊕
h≥0

Sg,h(Z)

is a normal ring finitely generated over Z.

Sketch of Proof. (1) The functoriality for M and the compatibility with the classical

Fourier expansion is clear from the above. Since Ag is smooth over Z, we have the

following left exactness of Sg,h(M) for M :

0→ N →M → (M/N)→ 0

⇒ 0→ λ⊗h ⊗Z N → λ⊗h ⊗Z M → λ⊗h ⊗Z (M/N)→ 0

⇒ 0→ Sg,h(N)→ Sg,h(M)→ Sg,h(M/N).

We prove the injectivity of F. Since any Z-module M is the direct limit of finitely gen-

erated Z-modules, and cohomology and tensor product commute with direct limit, we

may assume that M is a finitely generated Z-module, hence by the left exactness for

M, we may put M = Z or = Z/pZ (p : a prime number). Therefore, the injectivity

follows from that Ag⊗M is smooth over the ring M with geometrically irreducible fibers

which is proved in [FC]. Hence the remains of (1) follows from this injectivity and the

left exactness of Sg,h.
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(2) is derived by the following result in [FC]: there exists an algebraic stack Ag which

is proper smooth over Z and contains Ag as its open dense substack, and any integral

Siegel modular form of weight k can be extended to a section on Ag of an extension λ
⊗k

of λ⊗k (called Koecher’s principle).

The finiteness of rankZSg,h(Z) follows from these results immediately. Further, there

is m ∈ N such that λ
⊗m

defines a projective morphism Ag → IPn
Z which can be, by the

theory of Stein factorization, decomposed as Ag → A∗g → IPn
Z such that Ag → A∗g has

connected geometric fibers and A∗g → IPn
Z is finite. Therefore, replacing m by a multiple

λ
⊗m

defines a immersion of A∗g, and hence
⊕

k≥0H
0(Ag, λ

⊗mk
) and S∗g (Z) are normal

rings finitely generated over Z. QED.

Ring of SMFs of degree 2 and 3. (Igusa [Ig1,3], Tsuyumine [Ty1]) For g > 1 and

h > g + 1, the Eisenstein series of degree g > 1 and weight h is a function of Z ∈ Hg

defined by

Eg,h(Z)
def
=

∑
G∈Γ∞\Sp2g(Z)

det (CZ +D)−h ; G =

(
A B

C D

)
,

where

Γ∞
def
=

{(
U B

0 tU−1

)
∈ Sp2g(Z)

}
.

Then Eg,h becomes a Siegel modular form with Fourier coefficients in Q, and hence an

element of Sg,h(Q). Igusa [Ig1] proved that

S∗2(C) = C [E4, E6,∆10,∆12]
⊕

∆35 ·C [E4, E6,∆10,∆12] ,

where Eh = E2,h, ∆10 = E4E6−E10, ∆12 = 441E3
4 +250E2

6−691E12 and ∆35 ∈ S2,35(C)

is given by Ibukiyama as

∆35

(
z11 z12

z12 z22

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4E4 6E6 10∆10 12∆12

∂E4

∂z11

∂E6

∂z11

∂∆10

∂z11

∂∆12

∂z11

∂E4

∂z12

∂E6

∂z12

∂∆10

∂z12

∂∆12

∂z12

∂E4

∂z22

∂E6

∂z22

∂∆10

∂z22

∂∆12

∂z22

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

4.3. Teichmüller modular forms (TMFs)
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Analytic : automorphic functions on the Teichmüller space

= automorphic forms on the moduli space of Riemann surfaces,

Algebraic : global sections of line bundles on the moduli of curves.

This naming is an analogy of

Siegel modular forms (SMFs)

= automorphic functions on the Siegel upper half space

= global sections of line bundles

on the moduli of principally polarized abelian varieties.

Definition of TMFs. Let π : C → Mg be the universal curve over the moduli stack of

proper smooth curves of genus g > 1, and let λ
def
=
∧g π∗

(
ΩC/Mg

)
be the Hodge line

bundle. Then for a Z-module M , we call elements of

Tg,h(M)
def
= H0(Mg, λ

⊗h ⊗Z M)

Teichmüller modular forms of degree g and weight h with coefficients in M . By the

pullback of the Torelli map τ :Mg → Ag sending curves to their Jacobian varieties with

canonical polarization, we have a linear map

τ∗ : Sg,h(M) −→ Tg,h(M)

for Z-modules M. If g = 2, 3, then the image of the Torelli map is Zariski dense, and

hence τ∗ is injective.

If n ≥ 3, then

Mg,n/C
def
= the moduli space of proper smooth curves over C

of genus g with symplectic level n structure,

Ag,n/C
def
= the moduli space of principally polarized abelian varieties over C

of dimension g with symplectic level n structure

are given as fine moduli schemes over C. LetM∗g,n/C be the Satake-type compactifica-

tion, i.e., normalization of the Zariski closure of

(ι ◦ τ)(Mg,n/C) ⊂ A∗g,n/C,

where τ : Mg,n/C → Ag,n/C denote the Torelli map, and ι : Ag,n/C → A∗g,n/C denote

the natural inclusion to the Satake compactification. Then each point of M∗g,n/C −
Mg,n/C corresponds to the product J1 × · · · × Jm of Jacobian varieties over C with

canonical polarization and symplectic level n structure such that
∑m

i=1 dim(Ji) ≤ g and

that (m, g) ̸= (1,dim(J1)) . Therefore, if g ≥ 3, thenM∗g,n/C−Mg,n/C has codimension 2
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inM∗g,n/C, and hence by applying Hartogs’ theorem toMg,n/C ⊂M∗g,n/C and GAGA’s

principle toM∗g,n/C, one can see that analytic TMFs become algebraic TMFs, i.e.,

Tg,h(C) ∼=


holomorphic functions on the Teichmüller space Tg

with automorphy condition of weight h

for the action of the Teichmüller modular group Πg

 ,

and this space is finite dimensional over C.

Exercise 4.4. Give a precise definition of analytic Teichmüller modular forms.

Expansion of TMFs. Let C∆ be the generalized Tate curve given in Theorem 3.3 which

is smooth over the ring B∆. Then as in the elliptic and Siegel modular case, the evaluation

on C∆ (= the expansion by the corresponding local coordinates on Mg) gives rise to a

homomorphism

κ∆ : Tg,h(M) −→ B∆ ⊗Z M.

Theorem 4.2. ([I3]). Fix g > 1 and h ∈ Z.

(1) κ∆ is injective, and for a Teichmüller modular form f ∈ Tg,h(M) and a submodule

N of M ,

f ∈ Tg,h(N) ⇐⇒ κ∆(f) ∈ B∆ ⊗Z N.

(2) For a Siegel modular form φ ∈ Sg,h(M),

κ∆(τ
∗(φ)) = F (φ)|qij=pij ,

where pij are the multiplicative periods of C∆ given in Theorem 3.3 (4).

Proof. (1) follows from the fact that C∆ corresponds to the generic point onMg, and

the argument in the proof of Theorem 4.1 (1) replacing Ag byMg which is proper and

smooth over Z with geometrically irreducible fibers (see 3.2). (2) follows from Theorem

3.3 (4). QED.

Schottky problem. As an application of Theorem 4.2, we can give a solution to the

Schottky problem, i.e. characterizing Siegel modular forms vanishing on the Jacobian

locus, is given as follows:

τ∗(φ) = 0 ⇐⇒ F (φ)|qij=pij = 0.

pij are computable, hence κ∆ are computable

Using the universal periods pij in Example 3.1, the above implies the following result of

Brinkmann and Gerritzen [BG, G]: For the Fourier expansion

F (φ) =
∑

T=(tij)

aT
∏

1≤i<j≤g
qij

2tij
∏

1≤i≤g
qii

tii
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of a Siegel modular form φ vanishing on the Jacobian locus,

integers s1, ..., sg ≥ 0 satisfy

g∑
i=1

si = min{T(T ) | aT ̸= 0}

⇒
∑
tii=si

aT
∏
i<j

(
(xi − xj)(x−i − x−j)
(xi − x−j)(x−i − xj)

)2tij

= 0 in A0 (: given in Example 3.1).

Schottky’ J. For n ≡ 0 mod(4), put

L2n
def
=

{
(x1, ..., x2n) ∈ R2n

∣∣∣∣∣ 2xi, xi − xj , 1

2

∑
i

xi ∈ Z

}
: a lattice in R2n with standard inner product,

φn(Z)
def
=

∑
(λ1,...,λ4)∈L4

2n

exp

π√−1 4∑
i,j=1

⟨λi, λj⟩zij

 (Z = (zij)i,j ∈ H4)

: a Siegel modular form of degree 4 and weight n,

J(Z)
def
=

22

32 · 5 · 7
(φ4(Z)

2 − φ8(Z)) : Schottky’s J

: an integral Siegel modular form of degree 4 and weight 8.

Then Schottky and Igusa proved that the Zariski closure of the Jacobian locus in A4⊗ZC

is defined by J = 0.

Brinkmann and Gerritzen [BG, G] checked the above Brinkmann and Gerritzen’s cri-

terion for Schottky’s J, i.e., computed the lowest term of J and showed that this is given

by up to contant

F
q11q22q33q44∏

1≤i<j≤4 qij
,

where F is a generator of the ideal of C [qij (1 ≤ i < j ≤ 4)] which is the kernel of the

ring homomorphism given by

qij 7→
(xi − xj)(x−i − x−j)
(xi − x−j)(x−i − xj)

∈ A0.

Problem. Let J ′ be a primitive modular form obtained from J by dividing the GCM

(greatest common divisor) of its Fourier coefficients. Then for each prime p,

the closed subset of A4 ⊗Z Fp defined by J ′ mod(p) = 0

?
= the Zariski closure of τ(M4 ⊗Z Fp) in A4 ⊗Z Fp.

Hyperelliptic Schottky problem. ([I4]) Let pij be the universal periods given in Ex-

ample 3.1. Then

p′ij
def
= pij |x−k=−xk

(1 ≤ k ≤ g)
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become the multiplicative periods of the hyperelliptic curve Chyp over

Z

[
1

2xi
,

1

xi ± xj
(i ̸= j)

]
[[y1, ..., yg]]

uniformaized by the Schottky group:⟨(
xk −xk
1 1

)(
1 0

0 yk

)(
xk −xk
1 1

)−1 ∣∣∣∣∣∣ k = 1, ..., g

⟩
.

Since Chyp is generic in the moduli space of hyperelliptic curves, for any Siegel modular

form φ over a field of characteristic ̸= 2,

φ vanishes on the locus of hyperelliptic Jacobians ⇐⇒ F (φ)|qij=p′ij
= 0.

Problem. Give an explicit lower bound of n(g) ∈ N satisfying that

φ vanishes on the locus of hyperelliptic Jacobians ⇐⇒ F (φ)|qij=p′ij
∈ In(g),

where I is the ideal generated by y1, ..., yg.

4.4. TMFs and geometry of the moduli

Theta constants and ring structure.

For g ≥ 2, let

θg(Z)
def
=

∏
a, b ∈ {0, 1/2}g
4atb : even

∑
n∈Zg

exp

(
2π
√
−1
[
1

2
(n+ a)Zt(n+ a) + (n+ a)tb

])

be the product of even theta constants of degree g. If g ≥ 3, then θg is an integral

Siegel modular form of degree g and weight 2g−2(2g + 1).

Theorem 4.3. ([I2, 3]). For g ≥ 3,

(1) Tg,h(Z) is a free Z-module of finite rank satisfying that Tg,h(Z)⊗ZC = Tg,h(C), and

that Tg,0(Z) = Z, Tg,h(Z) = {0} if h < 0. Furthermore, the ring of integral Teichmüller

modular forms of degree g :

T ∗g (Z)
def
=
⊕
h≥0

Tg,h(Z)

becomes a normal ring which is finitely generated over Z.

(2) For the product θg of even theta constants of degree g,

Ng
def
=

{
−228 (g = 3),

22
g−1(2g−1) (g ≥ 4).
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Then
√
τ∗(θg)/Ng is a primitive element of Tg,2g−3(2g+1)(Z), i.e., not congruent to 0

modulo any prime.

(3) T ∗3 (Z) is generated by Siegel modular forms over Z and by
√
τ∗(θ3)/N3 which is of

weight 9, hence is not a Siegel modular form.

Proof. (1) follows from the argument in the proof of Theorem 4.1 (2) replacing

(
Ag, Ag, λ

)
by

(
Mg, Mg,

g∧
π∗(ωC/Mg

)

)
,

where π : C →Mg denotes the universal stable curve over Deligne-Mumford’s compacti-

fication. κ∆ is used to show that any integral Teichmüller modular form can be extended

to a global section onMg.

(2) Let D be the divisor ofMg ⊗Z Q consisting of curves C which have a line bundle

L such that L⊗2 ∼= ΩC and that dimH0(C,L) is positive and even. Then as is shown in

[Ty2], 2D gives the divisor of τ∗(θg), and hence a Teichmüller modular form of weight

(the weight of θg)/2 with divisor D, which exists and is uniquely determined up to con-

stant, is a root of τ∗(θg) up to constant (see below). Since D is defined over Q, a root of

τ∗(θg) times a certain number is defined and primitive over Z. To determine this number,

κ∆ is used as follows: Let A0, A∆, pij be as in Example 3.1. Then

θg(Z) = 22
g−1(2g−1)

 ∏
(b1, ..., bg) ∈ {0, 1/2}g∑

i bi ∈ Z

(−1)
∑

i bi

P · α2,

where

α : a primitive element of Z
[
q±1ij (i ̸= j)

]
[[q11, ..., qgg]] ,

P =
∏

(b1, ..., bg) ∈ {0, 1/2}g∑
i bi ∈ Z

1

2

∑
S⊂{1,...,g}

(−1)♯{k∈S|bk ̸=0}
∏

i∈S,j ̸∈S
q
−1/2
ij

⇒
(
the constant term of P |qij=pij ∈ A∆

)∣∣
x1=x−2,...,xg=x−1

= 1.

Hence we have (see Exercise 4.5 below):√
the constant term of P |qij=pij ∈ A0

⇒
√
θg|qij=pij ∈

{ √
−1 · 227 ·A∆ (g = 3),

22
g−1(2g−1)−1 ·A∆ (g ≥ 4).

(3) Recall the result of Igusa [Ig2] that the ideal of S∗3(C) vanishing on the hyperelliptic

locus is generated by θ3. Since the Torelli mapM3 → A3 is dominant and of degree 2, if
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we denote ι by the multiplication by −1 on abelian varieties, then⊕
h: even

T3,h(C) = {f ∈ T ∗3 (C) | ι(f) = f} = S∗3(C),⊕
h: odd

T3,h(C) = {f ∈ T ∗3 (C) | ι(f) = −f} .

Let f have odd weight. Then by ι(f) = −f, f = 0 on the hyperelliptic locus, and hence

by Igusa’s result, f2/θ3 becomes a Siegel modular form. Therefore, T ∗3 (C) is generated

by S∗3(C) and
√
τ(θ3) which implies (3) because

√
τ(θ3)/N3 is integral and primitive.

QED.

Exercise 4.5. Prove that ∏
(b1, ..., bg) ∈ {0, 1/2}g∑

i bi ∈ Z

(−1)
∑

i bi

 =

{
1 (g = 3),

−1 (g ≥ 4).

TMFs of degree 2. Let k be an algebraically closed field k of characteristic ̸= 2. Then

any proper smooth curve C of genus 2 over k is hyperelliptic, more precisely a base of

H0(C,ΩC) gives rise to a morphism C → IP1
k of degree 2 ramified at 6 points, and hence

M2 ⊗Z k ∼=
{
(x1, x2, x3 ∈ IP1

k − {0, 1,∞}
∣∣ xi ̸= xj (i ̸= j)

}/
S6,

where each element σ of the symmetric group S6 degree 6 acts on (x1, x2, x3)’s such as

(σ(x1), σ(x2), σ(x3), 0, 1,∞)

is obtained from σ(x1, x2, x3, 0, 1,∞) by some Möbius transformation of GL2(k). There-

fore, M2 ⊗Z k becomes an affine variety, and T2,h(k) = H0(M2, λ
⊗h ⊗Z k) is inifinite

dimensional. In fact, it is proved in [I3] that the ring

T ∗2 (Z)
def
=
⊕
h∈Z

T2,h(Z)

of integral Teichmüller modular forms is generated by τ∗(S∗2(Z)) and by 212/ (τ∗(θ2))
2

which is of weight −10.

Construction of TMFs. Assume that g ≥ 3. Then by results of Mumford [Mu1] and

Harer [H1], the Picard group ofMg :

Pic(Mg)
def
= the group of linear equivalence classes of line bundles onMg.
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is isomorphic to H2(Mg(C),Z) ∼= H2(Πg,Z) (Πg denotes the Teichmüller modular group

of degree g), and this is free of rank 1 generated by the Hodge line bundle λ over Q (←
can be omitted?). Therefore,

D ̸= 0 is an effective divisor onMg over a subfield K of C

⇒ there are n, h ∈ N such that OMg(D)⊗n ∼= λ⊗h

⇒ there is f ∈ Tg,h(K) such that (f) = n ·D
(for the application, see the proof of Theorem 4.3 (2)),

L is a line bundle onMg ⊗Z K

⇒ there are n, h ∈ Z such that L⊗n ∼= λ⊗h

⇒ there is g ∈ H0(Mg ⊗Z K,λ
⊗h ⊗ L⊗−n) giving OMg

∼→ λ⊗h ⊗ L⊗−n,

and f, g are uniquely determined by the existence of the Satake-type compactification of

Mg. From this method, one can construct Teichmüller modular forms and study their

rationality using κ∆.

Remark. Morita [Mo] and Mumford [Mu5] conjectured that the stable cohomology

groups defined for the moduli spaces of curves over C :

Hk(M)
def
= Hk(Mg(C),Q) = Hk(Πg,Q) (g ≥ 3k − 1)

: independent of g ≥ 3k − 1 by Harer’s result [H2]

satisfies that⊕
k≥0

Hk(M) = Q [κ1, κ2, ...] : freely generated over Q

by the tautological classes κi = π∗

((
c1
(
ΩC/Mg

))i+1
)

(the free generatedness is proved by Miller [M] and Morita [Mo]).

Mumford’s isomorphism. Grothendieck-Riemann-Roch’s theorem (GRR) says

that if π : X → B is a proper morphism over a smooth base, and E is a coherent sheaf

on X, then

ch (π!(E)) · td(B) = π∗ (ch(E) · td(X))

in the Chow ring CH∗(B) ⊗Z Q with Q-coefficients. In order to apply this theorem

to a stable curve π : C → B of genus g such that the total space C is smooth, and

E = ΩC/B ⊗ ωC/B, put γ = c1(ΩC/B) = c1(ωC/B), and let η be the class of the locus in

C which consists of ordinary double points of the fibers. Then

td(C)

π∗ (td(B))
= 1− γ

2
+
γ2 + η

12
+ · · · ,
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and hence by GRR,

ch (π∗(E))

= π∗

((
1 + γ +

γ2

2
+ · · ·

)2

· (1− η + · · ·) ·
(
1− γ

2
+
γ2 + η

12
+ · · ·

))

= π∗

(
1 +

3

2
γ +

(
13

12
γ2 − 11

12
η

))
= (3g − 3) +

(
13

12
π∗(γ

2)− 11

12
π∗(η)

)
= (3g − 3) + (13λ− 2π∗(η))

because by GRR again,

λ = c1
(
π∗
(
ωC/B

))
= π∗

(
γ2 + η

12

)
.

By deformation theory, the cotangent bundle T ∨Mg
ofMg is isomorphic to

π∗

(
Ext1

(
ΩC/Mg

,OC
)∨) ∼= π∗

(
Ext1

(
ΩC/Mg

⊗ ωC/Mg
, ωC/Mg

)∨)
∼= π∗

(
ΩC/Mg

⊗ ωC/Mg

)
(by Serre’s duality),

where π : C →Mg denotes the universal curve over Deligne-Mumford’s compactification.

Therefore, we have Mumford’s isomorphism [Mu4]:

3g−3∧
π∗

(
T ∨Mg

)
∼=

3g−3∧
π∗

(
ΩC/Mg

⊗ ωC/Mg

)
∼= λ⊗13 ⊗OMg

(Mg −Mg)
⊗(−2)

whose section appears as the string amplitude in String Theory.

In order to express
∧3g−3 π∗

(
Ω⊗2C/Mg

)
by the Hodge line bundle λ, we consider the

morphism

ρg : S2
(
π∗
(
ΩC/Mg

))
∋ (s, s′) 7→ s · s′ ∈ π∗

(
Ω⊗2C/Mg

)
between vector bundles onMg. If g = 2, then ρ2 is an isomorphism and gives

λ⊗3
det(ρ2)−→

3∧
π∗

(
Ω⊗2C/M2

)
∼= λ⊗13 ⇒ OM2 ∋ 1 7→ ±

(
τ∗(θ2)/2

6
)2 ∈ λ⊗10,

and if g = 3, then ρ3 is an isomorphism generically and vanishes on the hyperelliptic

locus, hence this gives

λ⊗4
det(ρ3)−→

6∧
π∗

(
Ω⊗2C/M3

)
∼= λ⊗13 ⇒ OM3 ∋ 1 7→ ±

√
τ∗(θ3)/N3 ∈ λ⊗9.
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Problem. For g > 1, describe a lift map:

{SMFs of degree g − 1} −→ {TMFs of degree g with level 2 structure}

obtained as the pullback of the Prym map:

{curves of genus g with unramified double cover} −→ Ag−1

C ′ → C 7−→ Jac(C ′)/Jac(C).

Problem. Are there Hecke-type operators acting on the space of Teichmüller modular

forms? Katsurada pointed that Schottky’ J defining the Jacobian locus in A4 is a Hecke

eigenform and is obtained by Ikeda’s lift [Ik] from ∆(τ) given in Exercise 4.2.
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§5. Fundamental groupoid of the moduli space

5.1. Galois group and fundamental groups

The absolute Galois group and cohomology.

The absolute Galois group Gal
(
Q/Q

)
is the automorphism group of the algebraic

closure Q of Q in C. Since Gal
(
Q/Q

)
becomes a profinite group given by

lim
←−

Gal(K/Q) (K runs through finite extensions of Q in Q),

this is a topological group with Krull topology.

By Grothendieck’s theory on l-adic cohomology groups,

X is a smooth algebraic variety over Q

⇒ Gal
(
Q/Q

)
acts naturally on Ql-coefficient cohomology groups H∗(X(C),Ql)

i.e., there is a group homomorphism Gal
(
Q/Q

)
→ Aut (H∗(X(C),Ql))

Assume the existence of the motivic Galois group G which is a proalgebraic group over

Q representing (i.e., the fundamental group of) the tannakian category of motives over

Q, there is a group homomorphism Gal
(
Q/Q

)
→ G(Ql) with Zariski dense image, and

hence a certain quotient of Gal
(
Q/Q

)
is realized geometrically.

Fundamental groups.

For a smooth algebraic variety X over Q and points a, b on the associated complex

manifold X(C),

π1(X(C); a, b)
def
= {homotopy classes of oriented paths from a to b on X(C)}

π1(X(C); a)
def
= π1(X(C); a, a)

: the fundamental group of X(C) with base point a.

Then
π1(X(C); b, c)× π1(X(C); a, b) −→ π1(X(C); a, c)

(ϕ, ψ) 7−→ ϕ · ψ def
=
←−−−
ϕ ◦ ψ,

and hence π1(X(C); a, b) is a torsor (principally homogeneous space) over π1(X(C); a)

and π1(X(C); b) under the right and left action respectively.

Let

π̂1(X(C); a)
def
= lim

←−
π1(X(C); a)/N : the profinite completion of π1(X(C); a)

(N runs through normal subgroups of π1 with finite index),

π̂1(X(C); a, b)
def
= the profinite completion of π1(X(C); a, b)

as a right torsor of π̂1(X(C); a).
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Then by Grothendieck’s theory on algebraic (etale) fundamental groups,

π̂1(X(C); a) ∼= lim
←−

Gal
(
Y/XQ

)
(F : Y → XQ = X ⊗Q Q runs through finite etale coverings),

and π̂1(X(C); a, b) consists of etale paths from a to b, i.e., compatible systems of bijec-

tions γF : F−1(a)
∼→ F−1(b) for finite etale coverings F : Y → XQ (any element of

π1 (X(C); a, b) naturally defines an etale path by tracing the fibers of F in Y (C) along

the associated paths). Therefore, if a, b are Q-rational points on X, then Gal
(
Q/Q

)
acts

on π̂1(X(C); a, b) as

(γF )F 7−→ (σ ◦ γF ◦ σ−1)F
(
σ ∈ Gal

(
Q/Q

))
,

and hence there is a group homomorphism Gal
(
Q/Q

)
→ Aut (π̂1(X(C); a, b)) . In his

mimeographed note [Gr], Grothendieck posed a program to realize Gal
(
Q/Q

)
geometri-

cally by taking X as moduli spaces of curves as follows.

5.2. Teichmüller groupoids

Teichmüller modular groups. For g, n ≥ 0 such that 3g − 3 + n ≥ 0, Knudsen [K]

constructed the moduli stack Mg,n with relative dimension 3g − 3 + n over Z which

classifies n-pointed proper smooth curves of genus g. Although Mg,n is only a stack

but not a scheme in general, Oda [O] proved that finite etale coverings of Mg,n ⊗Z Q

correspond bijectively to normal subgroups with finite index of

Πg,n
def
= π1 (Mg,n(C)) : the fundamental group of the orbifoldMg(C)

= the Teichmüller modular group, or the mapping class group,

and hence for a, b ∈Mg,n(Q),

π̂1 (Mg,n(C); a, b)
def
= the profinite completion of π1 (Mg,n(C); a, b)

as a torsor of the profinite completion Π̂g,n of Πg,n

has a natural Gal(Q/Q)-action.

Caution! To compute exactly Galois and monodromy representations associated with

Πg,n, it is necessary to know this structure and give explicitly Q-rational base points

on Mg,n. However, the presentation of Πg,n (given by Hatcher-Thurston, Wajnryb and

Luo [L] using Dehn twists) seems not so simple, and Mg,n seems not to have natural

Q-rational points.

Esquisse d’un programme. Grothendieck [Gr] introduced the notion of Teichmüller

groupoids which are defined as the fundamental groupoids of Mg,n’s with base points
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at infinity corresponding to maximally degenerate pointed curves. He conjectured that

in the category of arithmetic geometry, the system of Teichmüller groupoids (called the

Teichmüller tower) linked together by fundamental operations (such as plugging holes,

erasing marked points, gluing and their inverses) behaves like a 2-dimensional complex,

i.e., has generators associated with (relative) 1-dimensional objectsM0,4,M1,1 with re-

lations associated with 2-dimensional objects M0,5,M1,2. Under this conjecture, each

element of Gal(Q/Q) is realized as an automorphism of the profinite completion of the

Teichmüller tower.

Topology of Teichmüller groupoids. The topological structure of the groupoids is

studied in [BK1,2, FG, Fu, HLS, NS, N2], and here we review the formulation and

results by H. Nakamura. A pants decomposition of a fixed n-pointed Riemann surface

of genus g is to decompose it to the union of l-holed and m-pointed Riemann spheres

with l +m = 3, and then pinching holes to points we have a maximally degenerate n-

pointed curve. Nakamura introduced the notion of quilt decompositions which are a

refinement of pants decomposition by considering 3 seams on each pants and correspond

to degenerating behaviors (Figure):

the topological Teichmüller groupoid forMg,n

def
= the fundamental groupoid ofMg,n(C) with base points at infinity

corresponding to maximally degenerate pointed curves

=

{
changes of quilts (= pants with seams) decompositions

of a fixed n-pointed Riemann surface of genus g

}
.

Then he proved the following:

Theorem 5.1. ([N2], see [NS, Fu] also) For g, n ≥ 0 such that 3g − 3 + n ≥ 0, the

extended Hatcher complex of type (g, n) is defined as the cell complex whose

• 0-cells are isotopy classes of quilt decompositions of a fixed n-pointed Riemann

surface of genus g;

• 1-cells are the following elementary moves of 3-types:

[F] Fusing (or Associative, A-)moves connecting different sewing processes

from two 3-holed spheres to one 4-holed sphere (Figure),

[S] Simple (or S-)moves connecting different sewing processes from one 3-holed

spheres to one 1-holed real surface of genus 1 (Figure),

[D] Dehn half-twists which are half rotations along loops (Figure);

• 2-cells are relations induced from the basic objectsM0,4,M1,1,M0,5 andM1,2 (for

example, the pentagon relation is induced fromM0,5 (Figure).
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Then this complex is connected and simply connected. Since the Teichmüller modular

group acts on the extended Hatcher complex faithfully, one can see that any topological

Teichmüller groupoid is represented as conjectured by Grothendieck.

Sketch of Proof. It is shown in [HLS] and [FG] that the Hatcher complex whose

0-cells are isotopy classes of pants decompositions with the above 1, 2-cells is connected

and simply connected. Further, forgetting seams on each quilt we obtain a natural map

the extended Hatcher complex −→ the Hatcher complex,

and the fiber of each pants decomposition is connected and simply connected. Therefore,

extended Hatcher complex is also connected and simply connected. QED.

Arithmetic of Teichmüller groupoids. We review an arithmetic of the groupoids re-

alizing a game of Lego-Teichmüller given in [Gr]. Here we consider a quilt as a 3-holed

IP1(C) around 0, 1,∞ with 3 real lines. Then by gluing holes in several quilts to fit seams

to each other (like the Lego game!), we have a real deformation of a maximally degen-

erate pointed curve (Figure). Furthermore, by Theorem 3.3, this deformation can be

constructed over the ring consisting of polynomials of moduli parameters and of power

series of deformation parameters over Z, and that the elementary moves are described by

moving these parameters. Therefore, we have:

Theorem 5.2 ([I5]) There exists an appropriate base set L ⊂ Mg,n(C) of the Te-

ichmüller groupoid for Mg,n consisting of fusing moves and simple moves. For the nat-

ural Z-structure of Mg,n, L is a real orbifold of dimension 3g − 3 + n in the real locus,

and gives Z-rational tangential base points (
.
= unit tangent vectors) around the points at

infinity corresponding to maximally degenerate n-pointed curves of genus g.

If (g, n) = (0, 4), then

L = R− {0, 1} ⊂ M0,4(C) = IP1(C)− {0, 1,∞}

consists of three fusing moves, and if (g, n) = (1, 1), then

L = the Image of
(√
−1 ·R>0

)
⊂M1,1(C) = [H1/SL2(Z)]

consists of one simple move. For general (g, n), L ⊂Mg,n(C) is constructed by gluing L
inM0,4(C),M1,1(C) using the arithmetic Schottky uniformization theory.

Sketch of proof. The construction of fusing moves, which is the main part of the proof,

is as follows: Let ∆ be a stable graph whose only one vertex v0 has 4 branches bi

(1 ≤ i ≤ 4), and the other vertices have 3 branches. Further, let ∆′ (resp. ∆′′) be

the trivalent stable graph obtained from ∆ by replacing v0 with an edge having two
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boundary vertices one of which is a boundary of b1, b2 (resp. b1, b3) and another is a

boundary of b3, b4 (resp. b2, b4). Then C∆′ and C∆′′ given in Theorem 3.3 are connected

by a fusing move (Figure). By the result of Mumford [Mu2] that two Schottky groups

over a complete local ring are conjugate if and only if the Mumford curves uniformized

by these groups are isomorphic, we compare the moduli and deformation parameters in

A∆ with deformation parameters in A∆′ and A∆′′ . and hence the above fusing move can

be constructed by moving parametes in A∆ appropriately. QED.

5.3. Galois and monodromy representations

Galois representations. The action of Gal
(
Q/Q

)
on profinite Teichmüller groupoids

can be described by Theorem 5.2 and Ihara-Anderson’s method of Puiseux series [AI,

Ih2] as follows:

Theorem 5.3. ([I5]). Using the base set L in Theorem 5.2, we can describe the Galois

action on all generators of the Teichmüller groupoid forMg,n as follows:

• the action on fusing moves = the action on L ⊂M0,4;

• the action on simple moves = the action on L ⊂M1,1;

• the action on Dehn half-twists is given by the cyclotomic character

χ : Gal(Q/Q) −→ Ẑ×
def
= lim
←−

(Z/nZ)×; ζχ(σ)n = σ(ζn)
(
ζn

def
= e2π

√
−1/n

)
.

Example 5.1. Let α (resp. β) be the oriented path around 0 (resp 1) on M0,4(C) =

C− {0, 1} with tangential base point
−→
01 (Figure). Then α, β are generators of the free

profinite group Π̂0,4 = π̂1(M0,4(C);
−→
01) of rank 2, and hence for each σ ∈ Gal

(
Q/Q

)
,

one can define

fσ(α, β)
def
= (
−→
01)−1 · σ(−→01) ∈ Π̂0,4

which is, in fact, in the topological commutator subgroup of Π̂0,4. Then for a fusing

move φ and closed paths a, b on a fixed Riemann surface such that φ changes the quilt

decomposition for a to that for b (Figure), Theorem 5.3 says that

φ−1 · σ(φ) = fσ (δa, δb)
(
σ ∈ Gal

(
Q/Q

))
.

Sketch of proof. By Theorem 5.2, there exist formal coordinates u0, u1, ..., uG (G
def
=

3g + n− 4) over Z such that for sufficiently small ε > 0,

{(u0, u1, ..., uG | 0 < u0 < 1, 0 < ui < ε (i ≥ 1)}
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represents the fusing move φ. LetM be the maximal Galois extension ofQ(u0) unramified

outside 0, 1,∞. Then Π̂0,4 = π̂
(
M0,4(C);

−→
01
)
∼= Gal

(
M/Q(u0)

)
acts naturally on M,

and for any

a =
∑

a(n1, ..., nG)u
n1/N
1 · · ·unG/N

G ∈M
[[
u
n1/N
1 , ..., u

nG/N
G

]]
,

we have(
φ−1 ◦ σ(φ)

)
(a) =

∑(
(
−→
01)−1 ◦ σ ◦ −→01 ◦ σ−1

)
(a(n1, ..., nG))u

n1/N
1 · · ·unG/N

G

=
∑(

(
−→
01)−1 ◦ −→01 ◦ fσ

)
(a(n1, ..., nG))u

n1/N
1 · · ·unG/N

G

=
∑

fσ (a(n1, ..., nG))u
n1/N
1 · · ·unG/N

G ,

where
−→
01(∗) means the analytic continuation of ∗ along

−→
01. Therefore, φ−1 · σ(φ) =

fσ (δa, δb) . QED.

Grothendieck-Teichmüller group. Belyi [B] proved that any proper smooth curve

C over Q can be realized as a finite covering (Belyi’s covering) f : C → IP1 over C

unramified outside 0, 1,∞, hence corresponds to a subgroup Γf of Π0,4 of finite index.

Using this fact, he showed that

σ ∈ Gal
(
Q/Q

)
, σ ̸= IdQ

⇒ there is a J ∈ Q such that σ(J) ̸= J

⇒ EJ
def
= the elliptic curve y2 = 4x3 − 3J

J − 1
x− J

1− J
with j-invariant J (p.18)

is not isomorphic to Eσ(J) over C

⇒ Γf is not conjugate to Γf ′ (f, f ′ are Belyi’s coverings of EJ , Eσ(J) respectively)

⇒ the outer action of σ on Π̂0,4 is not trivial,

which implies the injectivity of the map:

Gal
(
Q/Q

)
∋ σ 7−→ (χ(σ), fσ) ∈ Ẑ× × Π̂0,4.

Drinfeld [Dr] introduced the profinite Grothendieck-Teichmüller group ĜT as a

subgroup of Ẑ××F̂ ′2 (F̂ ′2 denotes the topological commutator subgroup of the free profinite

group F̂2 generated by x, y) consisting of (λ, f) which satisfy

• f(x, y) · f(y, x) = 1 which follows from the relation
−→
10 · −→01 = Id;

• f(z, x) · zm · f(y, z) · ym · f(x, y) · xm = 1, if xyz = 1, m = (λ− 1)/2 which follows

from the relation between
−→
01,
−→
1∞, −→∞0 inM0,4;

• f(x12, x23) · f(x34, x45) · f(x51, x12) · f(x23, x34) · f(x45, x51) = 1 in Π̂0,5 (for the

definition of xij , see [Ih1]) which follows from the pentagon relation onM0,5.

55



It is shown by Drinfeld and Ihara that ĜT is regarded as the automorphism group of the

profinite Teichmüller tower of genus 0, and hence contains Gal
(
Q/Q

)
.

Let Γ(2) be the congruence subgroup of SL2(Z) of level 2 (p.6). Then the geometric

quotient H1/Γ(2) is the moduli space of elliptic curves over C with symplectic level 2

structure modulo ±1, and the λ-function:

λ : H1/Γ(2) −→ M0,4(C) = IP1(C)− {0, 1,∞}

τ 7−→ ℘Z+Zτ (τ/2)− ℘Z+Zτ ((τ + 1)/2)

℘Z+Zτ (τ/2)− ℘Z+Zτ (1/2)
= 16 eπ

√
−1τ + · · ·

gives Legendre’s model of π1(M0,4) (see [N1]) connecting simple and fusing moves:

λ∗ : π1

(
H1/Γ(2);

−−−→
i∞ 0

)
−→ π1

(
M0,4(C);

−→
01
)(

1 2

0 1

)
7−→ α,(

1 0

−2 1

)
7−→ β.

Using this model, Lochack, Nakamura and Schneps [LNS, NS] translated the relations for

M1,1,M1,2 to those forM0,4,M0,5 and they introduced a subgroup IΓ satisfying that

• Gal
(
Q/Q

)
⊂ (

?
=) IΓ ⊂ (

?
=) ĜT ⊂ Ẑ× × Π̂0,4,

• IΓ acts on profinite Teichmüller modular groups extending the Galois action for

tangential base points of restricted types.

Exercise 5.1. Show that λ(τ) = 16eπ
√
−1τ + · · · .

This result together with Theorem 5.3 imply the simple picture:

Gal
(
Q/Q

)
⊂ IΓ = Aut (the profinite Teichmüller tower)

giving the Galois action on each Teichmüller groupoid.

Monodromy representations. Conformal field theory (CFT) provides vector bun-

dles (V,∇) with projectively flat connection over the moduli of pointed Riemann surfaces

with first-order infinitesimal structure on each marked point. This theory was studied by

Moore-Seiberg [MS] as a representation theory of Teichmüller groupoids by the Riemann-

Hilbert correspondence, and constructed rigorously by Tsuchiya-Ueno-Yamada [TUY].

Then in a similar way to the proof of Theorem 5.3, we have

Theorem 5.4. ([I6]) Using the base set L, we can compute the monodromy representa-

tion of any Teichmüller groupoid for the TUY-theory as:
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• monodromy of fusing moves

= connection matrices of the Knizhnik-Zamolodchikov differential equation;

• monodromy of simple moves

= transformation matrices of non-abelian theta functions given in [KP];

• monodromy of Dehn half-twists

= exp
(
π
√
−1× (the residues of the connection forms)

)
.

Hence the monodromy for TUY is given as the monodromy for the Wess-Zumino-Witten

model given by Kohno [Ko].

Example 5.2. Let V be a vector space over C, and A,B ∈ End(V ) be linear endomor-

phisms of V. We consider the linear differential equation on t ∈ (0, 1) :

G′(t) =

(
A

t
+

B

t− 1

)
G(t),

and let Gi(t) (i = 1, 2) be its two solutions satisfying the asymptotic condition:

lim
t→0

G0

tA
= lim

t→1

G1

(1− t)B
= idV .

Then

Φ(A,B)
def
= G1(t)

−1 ·G0(t) : the connection matrix

is independent of t and hence is an automorphism of V. Further, using iterated integrals∫
ω · · ·ω of ω

def
=

(
A

t
+

B

t− 1

)
dt, we have

Φ(A,B) = lim
ε→0

ε−B
( ∞∑

n=0

∫ t

1−ε
ω · · ·ω︸ ︷︷ ︸

n

)−1( ∞∑
n=0

∫ t

ε
ω · · ·ω︸ ︷︷ ︸

n

)
εA


= lim

ε→0

{
ε−B

( ∞∑
n=0

∫ 1−ε

ε
ω · · ·ω︸ ︷︷ ︸

n

)
εA

}
.

Let (V,∇) be as above, and let φ be a fusing move and a, b be closed paths on a fixed

Riemann surface such that φ changes the quilt decompostion for a to that for b (Figure).

Then the monodromy of φ with respect to (V,∇) is given by

Φ (Resa(∇),Resb(∇)) mod(C×),

where Res∗(∇) is the principal part of the connection form of ∇ around ∗.

5.4. Motivic theory
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A joke!? Main targets in number theory and in physics are respectively:

Gal(Q/Q) UNIVERSE

Grothendieck’s

program
↖ ↗ string theory

Moduli of curves

Roughly speaking, these objects correspond to:

Etale aspect Motivic theory? De Rham aspect

↖ ↗
π1 of the Moduli

Motif on π1(M0,4). For a smooth algebraic variety X over Q with Q-rational (tan-

gential) point a, in order to linearlize

π1
def
= π1 (X(C); a) ,

put

Q [π1]
def
=

{
finite sums

∑
i

αigi

∣∣∣∣∣ αi ∈ Q, gi ∈ π1

}
: the group Q-algebra of π1,

J
def
=

{∑
i

αigi ∈ Q [π1]

∣∣∣∣∣ ∑
i

αi = 0

}
: the augmentation ideal of Q [π1] ,

Q [π1]
∧ def

= lim
←−

Q [π1] /J
n : the completed group algebra of π1,

G [π] def
=

{
M ∈ Q [π1]

∧ ∣∣ ∆(M) = 1⊗M +M ⊗ 1
}

(∆ : the diagonal map)

: the Malcev Lie algebra associated with π1 for [M,N ]
def
= MN −NM.

In particular,

X =M0,4 = IP1 − {0, 1,∞}, a =
−→
01

Q⟨⟨A,B⟩⟩ def
= the ring of noncommutative power series over Q of A,B

⇒ Q
[
π1

(
X(C);

−→
01
)]∧ ∼= Q⟨⟨A,B⟩⟩

α ↔ eA
def
=

∞∑
n=0

An

n!

β ↔ eB,

and {
fσ
(
eA, eB

)
∈ Ql⟨⟨A,B⟩⟩,

Φ(A,B) ∈ R⟨⟨A,B⟩⟩
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describe the Galois, Hodge counterparts of the mixed Tate motives on π1 (M0,4) respec-

tively (see [D2]).

Galois counterpart. In order to compute fσ, as a special case of the computation of

l-adic polylogarithms in [NW], put

c1/m
def
= exp(log(c)/m) for c ∈ C× and the principal branch of log,

κ
(a)
ln : Gal

(
Q/Q

)
→ Zl defined by σ

((
1− ζχ(σ)

−1·a
ln

)1/lm)
= ζ

κ
(a)
ln (σ)

lm · (1− ζaln)
1/lm ,

Hln
def
= the kernel of the homomorphism Π̂0,4 → Z/lnZ sending α 7→ 1, β 7→ 0.

Then Hln is a free profinite group generated by αln , α−aβαa (a = 0, ..., ln − 1), and

contains F̂ ′2. Since (
1− ζbln · t1/l

n
)1/lm

σ−1

7−→
(
1− ζχ(σ)

−1·b
ln · t1/ln

)1/lm
−→
017−→

(
1− ζχ(σ)

−1·b
ln − ζχ(σ)

−1·b
ln ·

∞∑
k=1

(
1/ln

k

)
(t− 1)k

)1/lm

σ7−→ ζ
κ
(b)
ln (σ)

lm

(
1− ζbln − ζbln ·

∞∑
k=1

(
1/ln

k

)
(t− 1)k

)1/lm

(
−→
01)−1

7−→ ζ
κ
(b)
ln (σ)

lm

(
1− ζbln · t1/l

n
)1/lm

,

and

(
α−a ◦ β ◦ αa

) (
1− ζbln · t1/l

n
)1/lm

=

{ (
1− ζbln · t1/l

n)1/lm
(a ̸= b),

ζ−1lm

(
1− ζbln · t1/l

n)1/lm
(a = b),

we have

fσ(α, β) ≡
∏

0≤a<ln

(
α−aβαa

)−κ(a)
ln mod [Hln , Hln ] .

Therefore, using log
(
eAeBe−A

)
=

∞∑
i=0

(adA)i(B)

i!
,

χm : Gal
(
Q/Q

)
→ Zl defined by χm(σ) ≡

ln−1∑
a=0

am−1 · κ(a)ln (σ) mod(ln)

⇒ log
(
fσ
(
eA, eB

))
≡
∞∑
i=0

(−1)iχi+2(σ)

(i+ 1)!
[A, ..., [A, [A︸ ︷︷ ︸

i+1

, B]], ...],
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and for each odd integer m ≥ 3, Soulé proved that χm(σ) gives a nonzero element of

Ext1
Gal(Q/Q)

(Ql,Ql(m)) ((1 − lm−1)χm(σ) is called m-th Soulé’s character usually).

Hain-Matsumoto [HM] (see also [DG]) proved Deligne-Ihara’s conjecture [D2, Ih1] that

the Malcev Lie algebra associated with the Galois structure on π1 (M0,4) are generated

by Soulé’s characters.

Hodge counterpart. To compute Ψ(A,B) as an element of R⟨⟨A,B⟩⟩, following [LM],

let x, y be variables commuting each other and with A,B, and define an R-linear map

Ψ : R⟨⟨A,B⟩⟩ → R⟨⟨A,B⟩⟩[[x, y]] → R⟨⟨A,B⟩⟩
H(A,B) 7→ H(A− x,B − y)

ypHxq 7→ BpHAq

such that Ψ (
∑∞

n=0Hn) =
∑∞

n=0Ψ(Hn) for Hn ∈ R⟨⟨A,B⟩⟩ of total degree n. Then

Ψ(BH) = Ψ(HA) = 0 (H ∈ R⟨⟨A,B⟩⟩), Ψ(Φ(A,B)) = Φ(A,B)

because

Φ(A− x,B − y) =
(
t−x(1− t)−yG1(t)

)−1 · (t−x(1− t)−yG0(t)
)
= Φ(A,B).

Therefore, we have

Φ(A,B) = Ψ (Φ(A,B))

= lim
ε→0

Ψ

(
ε−B

( ∞∑
n=0

∫ 1−ε

ε
ω · · ·ω︸ ︷︷ ︸

n

)
εA

) (
ω

def
=

(
A

t
+

B

t− 1

)
dt

)

= lim
ε→0

Ψ

( ∞∑
n=0

∫ 1−ε

ε
ω · · ·ω︸ ︷︷ ︸

n

)
(∗1)
= 1− ζ(2)[A,B]− ζ(3)[A, [A,B]]− ζ(3)[B, [A,B]]

− ζ(4)[A, [A, [A,B]]]− ζ(4)[B, [B, [A,B]]]

− ζ(1, 3)[A, [B, [A,B]]]− ζ(2)2

2
[A,B]2 + · · ·

(by Drinfeld? Kontsevich?),

which is called Drinfeld’s associator, where for integers k1, ..., km such that km ≥ 2,

ζ(k1, ..., km)
def
=

∑
1≤a1<···<am

1

ak11 · · · a
km
m

: the multiple zeta values

(∗2)
=

∫ 1

0

dt

t
· · ·
∫ t

0

dt

t︸ ︷︷ ︸
km−1

∫ t

0

dt

1− t
· · ·
∫ t

0

dt

t
· · ·
∫ t

0

dt

t︸ ︷︷ ︸
k1−1

∫ t

0

dt

1− t
.
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Exercise 5.2. Prove the above (∗1) and (∗2).

Goncharov [Go] and Terasoma [Te] (see also [DG]) proved Deligne-Zagier’s conjecture

[D2] that the Malcev Lie algebra associated with the Hodge structure on π1 (M0,4) are

generated by ζ(m) (m ≥ 3, odd) which implies the following:

Lw
def
=
{∑

Q · ζ(k1, ..., km) ∈ R
∣∣∣ k1 + · · ·+ km = w

}
,

dw are the integers defined by

∞∑
n=0

dnt
n =

1

1− t2 − t3

⇒ dimQ Lw ≤ dw.

Caution! If X =M1,1 which is not an algebraic variety, then

π1(X(C)) ∼= SL2(Z) is generated by the 2 elements

σ1 =

(
0 1

−1 0

)
, σ2 =

(
1 1

−1 0

)
of finite orders

⇒ there is m ∈ N such that σmi = 1 (i = 1, 2)

⇒ m log(σi) = log (σmi ) = −
∞∑
n=1

(1− σmi )n

n
= 0 in Q [SL2(Z)]

∧

⇒ log(σi) = 0, i.e., σi = 1 in Q [SL2(Z)]
∧ (i = 1, 2)

⇒ Q [SL2(Z)]
∧ = {0}.

However, using Legendre’s model and the results of [HM, Go, Te, DG], one can construct

a mixed Tate motif on Q [Γ(2)]∧ which is generated by Ext1Z (Q,Q(m)) (m ≥ 3, odd),

and by Ext1 (Q,Q(1)) corresponding to
{

n
√
16
}
n∈N because the first Fourier coefficient

of λ(τ) is 16.

Exercise 5.3. Prove that

• SL2(Z) is generated by

(
0 1

−1 0

)
and

(
1 1

−1 0

)
(cf. Exercise 3.1);

• Γ(2) is generated by

(
1 2

0 1

)
,

(
1 0

2 1

)
and

(
−1 0

0 −1

)
.

Problem. Using Theorem 5.3, construct a motivic theory on Q
[
Π′g,n

]
, where Π′g,n de-

notes the principal subgroup of π1 (Mg,n(C)) = Πg,n of level 2. Does this provide mixed

Tate motives generated by Ext1Z (Q,Q(m)) (m ≥ 3, odd), and by Ext1 (Q,Q(1)) corre-

sponding to
{

n
√
2
}
n∈N ?
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Number Fields (ed. A. Fröhlich), Acad. Press, 1977, pp. 193-268.

[Si] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate

Texts in Math., Vol. 151, Springer-Verlag, 1994.

[T] J. Tate, A Review of Non-Archimedean Elliptic Functions, in : J. Coates and S. T.

Yau, (eds.), Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Series in

Number Theory, Vol. 1, 1995, pp. 162-184.

[Te] T. Terasoma, Mixed Tate motives and multiple zeta values, Invent. Math. 149

(2002) 339-369.

66



[TUY] A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family

of stable curves with gauge symmetries, Adv. Stud. in Pure Math. 19 (1989)

459-566.

[Ty1] S. Tsuyumine, On Siegel modular forms of degree three, Amer. J. Math. 108

(1986) 755-862.

[Ty2] S. Tsuyumine, Thetanullwerte on a moduli space of curves and hyperelliptic loci,

Math. Z. 207 (1991) 539-568.

List of Exercises

Exercise 2.1: p.5 Exercise 2.2: p.11 Exercise 2.3: p.13 Exercise 2.4: p.14

Exercise 2.5: p.14

Exercise 3.1: p.19 Exercise 3.2: p.26 Exercise 3.3: p.26 Exercise 3.4: p.29

Exercise 3.5: p.33

Exercise 4.1: p.35 Exercise 4.2: p.36 Exercise 4.3: p.38 Exercise 4.4: p.42

Exercise 4.5: p.46

Exercise 5.1: p.56 Exercise 5.2: p.60 Exercise 5.3: p.61

〒 840-8502 佐賀市本庄町 1

佐賀大学 理工学部 数理科学科
市川 尚志

E-mail: ichikawa@ms.saga-u.ac.jp

TEL: 0952-28-8530（研究室）
FAX: 0952-28-8501（事務室）

67


